

Researcher Links UK-Russia Workshop

Scientific and Technical Grounds of Future Low-Carbon Propulsion

19th - 22nd November 2018, Northumbria University at Newcastle, UK

Alexey Terenchenko

Federal State Unitary Enterprise

"Central Scientific Research

Automobile and Automotive Engines Institute"

(FSUE "NAMI")

RUSSIA, MOSCOW

Russian WorkShop Team

Engines Institute

«Gubkin University»

2

HISTORY

1918

Establishment of NAMI

2012

Era of driverless transport in Russia

2018

Centenary of NAMI

AR-NATI 1. First Light Military All-Terrain Vehicle

LAZ-NAMI-751. First Soviet Electric Vehicle

NAMI-020. First Soviet Truck. URAL

Driverless KALINA. First Russian Driverless Platform

SHATL.
Autonomous EcoBus

AURUS. Luxury Vehicles Line-Up

Driverless Proving Ground. Dmitrov, Moscow Region

NAMI'S TEAM results

GROWTH RATE:

↑ x 8 amount of work over the last 5 years ↑ x 2.3 personnel

22 Doctors of Sciences 2 504 employees

70 % researchers & engineers **110** Candidates of Sciences

139 patents **5** trademarks

know-how **5** computer programs

Technical regulation & certification

Electronic and

25

255

Staff number

from year to year

554

52

MORE THAN 150 PARTNERS WORLDWIDE

RUSSIA: KAMAZ, SOLLERS, AVTOVAZ, Avtodor, GLONASS, Yandex, Rosseti, Rostelecom

EUROPE: Porsche Engineering, AVL, FEV, AKKA, Magna, EDAG, Bosch, BLUE Engineering

ASIA: CATARC, TAKATA, YESSUN, AGC, Booyoung Tech Co, JTR Automotive Group

Proving Ground

Magadan

Works and services

Automobile Market Research, Analysis and Forecast

Foresight, analysis, forecast, monitoring of the market, industry, equipment and technologies

Industry strategies
Development programs

Technical & technological and financial & economic expert review of project

Product marketing

Business planning, audit support, risk-assessment

Development and implementation of the industry analysis system for industrial companies and government organizations

Russian Federation Automotive Industry Development Strategy 2025 Export Development Strategy of Automobile industry Strategy of ADAS Development in Russia

For Vnesheconombank about the projects of CLAAS, Mercedes-Benz, GAZ Group, etc.

Promotion of the premium class car to the Russian and export markets

For companies and projects AUTOVAZ, «Ë-Мобиль», LADA Izhevsk, UAG, YMZ, etc.

FACILITIES AND SERVICES. R&D

STYLE & DESIGN

Design Project Development

Analysis, conception

Rendering

Video visualization

Mock-ups, inc. in information environment

HMI, graphic arts

ELECTRONIC AND INTELLIGENCE SYSTEMS

The high-voltage battery and components
Intelligent transport and systems
Engine's and automatic transmission's regulating
system
ADAS

INTEGRATION

Benchmark

Packaging

NVH Comfort

Aerodynamics

HMI / Ergonomics

Functional Integration / Validation

Passive safety

BODY

BIW

Interior

Exterior

Thermal management

ENGINES

Oil fuel and alternative types of fuel engines

Hybrid power plants (testing methods, equipment, control systems, electric traction drive)

New research methods in the field of energy and resource conservation and saving and environmental safety of power plants within product life cycle

Applied software development

TRANSMISSION

Mechanical and automatic transmissions

Driving axles and differentials

Transfer cases

Power take-off attachments and reduction gears

SPECIAL-PURPOSE VEHICLES' DESIGNS

Special Multi-Purpose All-Wheel Drive Vehicles

Special- and Multi-Purpose Driverless Vehicles and Robotic Platforms

Special- and Multi-Purpose Tracked Vehicles

CHASSIS

Various types of vehicle suspension Steering control Brake system Wheels and tires Power plant suspension

Technologies

ADDITIVE TECHNOLOGIES

Functional prototypes' production

Casting burn-out models' production

Master-models' production

Full-size vehicle mock-ups' production

CASTING

Production of sand cores and molds for metal casting

Vacuum casting of nonferrous metals

Gravity casting

Aluminium alloys, castiron, steel

MACHINING

Aluminium, cast-iron, steel

Any complexity and accuracy

MOCK-UP PRODUCTION AND TOOLING

Full-size mock-ups of vehicles, vessels and aircraft, tooling for vacuum forming and composite materials

Tooling for hydro elastic stamping, tooling for composite materials from model materials and lightweight alloys

WELDING

Production of welding tooling

Metal welding: spot

and arc
Laser beam cutting of metals

CNC pipe bending

CNC sheet metal bending Metalwork production

Vehicle BIW welding

PAINTING

Use of any type of paints, inclusive of water-based ones

ADVANCED TECHNOLOGIES

Searching, analysis and definition of key directions

Elaboration of engineering and technical policy as to development and implementation

Projects' technological expertise and appraisal, coordination of works on development and implementation

Testing and certification of automobile products

LABORATORY TESTING

Certification, check, research testing of vehicles, ICEs and their components for evaluation of their environmental properties, fuel efficiency and reliability

Hybrid Power Plants' testing, Filters' testing

Control systems' testing

Check, development and adjustment testing of transmission with determination of climatic, strength and power properties and parametres; other transmission elements

Brake mechanisms' testing

Aerodynamic Testing

Passive and active safety testing, assessment of vehicle ergonomic properties

ROAD TESTING

Road, run testing: 15 types and versions of test roads, the total length of which is 110 km at 25 km2 area

Active safety (controllability, brake dynamics, testing of wheels and tires)

Environmental properties

Noise and vibroacoustics (NVH)

Testing of road and bridge fences or guards

Determination of operating characteristics (ecology, safety, comfort, etc.)

TECHNICAL REGULATION

Standardization

Coordination of Russian Federation experts' activity within working groups and authorities of UNECE World Forum for harmonization of vehicle regulations (WP.29)

Identification

Development and actualization of systems of compliance assessment of wheeled vehicles and their components

Technical Expertise and Appraisal

AURUS

Excellent Embodiment of Force, Power and Safety

LIMOUSINE

V8 engine, 600 hp, 880 Nm Electric motor 60 hp, 400 Nm 9-speed planetary gearbox

UNIFIED MODULAR PLATFORM

Road clearance 200 mm «Commander» seating Inspired by Russian history

Power Units Center: 85 researchers & engineers; 4 Doctors of Sciences; 8 Candidates of Sciences

Our Works:

Strategic management. Fundamental research

Work Process,
Combustion,
Emission,
Drivability,
Tradition Fuels,
Alternatives Fuels,
Energy Saving Technologies,
Construction materials

Simulation

- Aftertreatment
- •NVH
- Combustion and Emissions
- Powertrain Components
- Electrification
- Quenching
- •EMC/EMI Simulation
- Strength and Durability
- •Energy Management
- •Thermal Management
- Model Based Development
- Injection Nozzle
- Turbocharging
- Model Based Testing
- •Vehicle System Simulation

Engineering

Gasoline, Diesel
Engine small, middle, large
Aftertreatment
E-Drive, Battery
Fuel Cell, Power units
Vehicle/Engine System
Commercial Vehicle Hybrid
Conventional Vehicles
Electric Vehicle Powertrain System
Hybrid Vehicles
Tractor/non-road Engineering

Bench testing

Bench testing
Combustion Development
Emission,
Acoustic,
Durability,
Reliability
OBD testing
Calibration

Certification, regulation development

Certification testing
Homologation testing
Verification testing
Development of worldwide and
national regulations,
standards, rules.

Strategic management. Selection of research directions.

North America. Non-road includes aviation, marine and rail

94% currently

■ ICE-Benzin ■ ICE-Diesel ■ ICE-CNG ■ Benzin-Hybrid ■ PHEV ■ REEV ■ BEV ■ FCEV

 N_e =440 kW, $M_{\kappa p}$ =880 Nm S/D = 90/88 (mm) ϵ = 10

Fuel: Gasoline Au-95-98 (Premium); Ethanol E-10 LxWxH = 683x779x823 mm

m = 230 kg

Power Units Center

 N_e = 630 kW, M_{kp} = 1320 Nm S/D = 90/88 (MM)

 $\varepsilon = 10$

Fuel: Gasoline Аи-95-98 (Premium); Ethanol E-10 LxWxH = 935x813x860 мм

m = 310 kg

 N_e = 180 κW, $M_{\kappa p}$ = 350 Nm S/D = 90/88 (мм) ε = 9,5 Fuel: Gasoline Aμ-95-98 (Premium); Ethanol E-10 LxWxH = 727x723x773 мм m = 150 кg **Purpose:** passenger cars of class B, C, D, small garden and construction equipment, small diesel generator sets, motorcycles and Range Extenders for hybrid engines.

Туре	Engine	Displacement, L	Brake power , kW	Boost	Compression ratio
Gasoline, Ethanol	R1	0,55	30	-	12
	R2	1,1	56	-	12
	R3	1,65	133	1TC	9,5
	R4	2,2	157	1TC	9,5

Туре	Engine	Displacement, L	Brake power , kW	Boost	Compressio n ratio
Diesel, Biodiesel	R1	0,55	11	-	17
	R2	1,1	24	-	17
	R3	1,65	104	1 TC	17
	R4	2,2	135	1 TC	17

148,8/9 248,8/9 34H8,8/9 44H8,8/9

Hybrid electric cargo vehicle with hydrogen fuel cells

Car VAZ-2111 using hydrogen - ethanol mixtures with the production of hydrogen on board

Development of a modular design of the series hybrid power unit for the autoplants LiAZ and PAZ

Commercial vehicle GAZ-3310 HN «Valday»

Bus LIAZ-5292 HN

Bus LIAZ-6213 HN

Bus PAZ-3204 HN

Development of all-wheel drive truck type 6x6 with a parallel hybrid power unit for KAMAZ

Layout schemes of the truck with individual electric drive of the front wheels

KAMAZ-65206 (6x6)

Simulation model

Simulation model

3D Design

Manufacturing and conducting a complex of functional tests

Project cooperation

Development hybrid electric commercial vehicles for SOLLERS Group

Operationmode	ICE mode	E-mode	e-Boost mode		
Description	Mode of movement from the ICE	Electric motor driving mode	Split hybrid mode		
Engine	Capacity: 2.31, gasoline				
	Brake power: 131.6 hp				
		Torque: 214 Nm			
Gearbox	Automatic 6-speed				
E-machine	Brake power: 126.44 hp				
	Torque: 288 Nm				
Battery	Capacity: 14.5 kWh				
	Rated voltage: 355V				
Environmental class	EURO 6				
Fuel consumption, I/100km	13.5	2.8	7.6		
Range, km	777	more 76	more 850		
Brake power, hp	131.6	126.4	258		
Torque, Nm	214	288	500		
Max vehicle speed, km/h	108	Up to 50	141		
Acceleration time to 100	20	-	10.7		
km/h, s					

Researcher Links UK-Russia Workshop

Scientific and Technical Grounds of Future Low-Carbon Propulsion

19th - 22nd November 2018, Northumbria University at Newcastle, UK

Alexey Terenchenko

terenchenko@nami.ru

Mobile: +7 916 663 45 60

NAMI Russian State Scientific Research Center 2 Avtomotornaya St., Moscow, Russia, 125438 http://www.nami.ru

Thank you for your attention

