

Waste heat recovery from IC engines: An ORC based approach

Guohong Tian University of Surrey

Researcher Links UK-Russia Workshop Scientific and technical grounds of future low-carbon propulsion 21 Nov 2018

Saturday, 15 December 2018

THERMAL PROPULSION SYSTEMS

DRIVERS	Tailpipe CO2 and air quality emission limits		Trend towards very lo	Trend towards very low CO2 and air quality emissions limits, zero emission zones, LCA	
TARGETS*	Current status	2025 tar	gets	2035 targets	
Light duty brake thermal efficiency (%)	42 %	48 %	<u>,</u>	53 %	
Heavy duty brake thermal efficiency (%)	47 %	55 %		60 %	
		• •			*
THERMAL EFFICIENCY	Coatings, thermal management	and combustion systems designed for lo	ow heat loss		
	Flexible CR and valve control e	າabling cylinder deact. ຍ deep Miller/Atkir	nson cycles 🛛 🚽 🚽		
Light duty oriented	Efficient, clean comb	ustion e.g. lean burn, HCCI, water injectio	on 💦 🗍		
			$\rangle \rangle \rangle$	Hybrid-focussed power units e.g. ca	mless engine, fuel cell
	Reduced heat loss e.g. coatings, thermal management, combustion phasing				
Heavy duty oriented	Lower temperature combustion e.g. HCCI, PPCI, extrem			ie lean burn NG 💦 🚬 🖳	
			🕨 〉 🔪 High e	ff. power units with integrated WHR, eg	split cycle, high temp. fuel cell
	Exhaust heat recovery (e.g. t	rbocompounding, Organic Rankine Cycl	> > > > > > > > > > > > > > > > > > >	Integrated heat recovery from mu	ltiple heat sources
Fuelling	Engine optimised for available fuels i.e. diesel, gasoline, natural gas Engine accepting to a wide range of fuels e.g. synfuels, H2, advanced fossil				
	Flexible fuel systems	e.g. rate shaping, multiple injection, noz	zle geometry		
SYSTEM EFFICIENCY	Advanced lubrication and	lightweighting via design/manuf. and Al, I	Mg, Ti 🔶 🔪		
	Wide spectrum after-tre	atment e.g. pre-turbine, low temp, elec. a	assisted, alt. fuel suited	On board re	forming, CO2 capture
Engine systems and control	Multi boost devices for v. wide map Controlled air supply supporting high efficiency combustion e.g. e-boost and multi device				
	Advanced powertrain control	Predictive control via	a V2X 🔰 🔪 Aggressive 🛛	ZE geo-fencing > 🔪 Fu	ılly auto powertrain control, Al
	Electrified light duty a	ncillaries (48v), reduced parasitic loads	\rightarrow		
Enabling drivetrain systems	Hybrid systems for	effective recovery e.g. 48v, KERS	\rightarrow	Co-developed engine and h	ybrid system
	Manual transmissions replace	d by 10+ speed auto, shift mgmt. and e-o	clutch	Co-developed HD-focused engine and	auto, no torque convertor
DESIGN AND MANUFACTURING		Design for disassembly and recy	ycling	Design for low life cycle impact	i.e. incl. embedded impacts
			Next gen. manufacturing incl. a	nufacturing incl. additive layer, metal injection moulding, metal foams	
	A			▲ · · · · ·	
2	2015 20	20 2025	5 2	2030 2	035 .

THE ROADMAP REPORT, produced by APC

High-efficiency heavy duty diesel engine technical map

* Hybridization can be described in terms of a "mild" or "full" relative power rating of the electric motor with respect to the internal combustion engine.

Corning Incorporated

IC engine energy balance

ORC based WHS for IC engines

- N Relatively mature technology
- $\sqrt{-}$ Relatively low cost
- χ Relatively complex
- x Reverse effect on engines
- x Relatively low efficiency (<10%)
- $\sqrt{-}$ Optimisation potential

Working fluid selection

- Dry fluid vs wet fluid
 - For ORC, dry or isentropic fluid is superior over wet
- Organic fluid over water
- Other characteristics
 - Chemically stable
 - Non-toxic, non-corrosive
 - Inflammable
 - Environmental friendly
- Mixture fluids have good potentials

Scroll expander design and optimisation

- Key component to convert thermal energy to mechanical work
- Power range for vehicular WHR application is approximately 10 kW
- Scroll expander can achieve about 60-70% isentropic efficiency.

Applied Thermal Engineering, Volume 141, August 2018, Pages 1020-1034

Scroll expander design and optimisation

Internal flow simulation

- Novel variable wall thickness design
- 3D unstructured computational grid
- Dynamic mesh technology including smoothing/ remeshing schemes and user-defined-functions (UDF)

Scroll expander optimisation

Fluid-thermal-solid coupling analysis

- Coupled simulation to investigate the deformation which is important for sealing and cooling design.
- Thermal deformation predominates but also need to consider pressure and inertial force deformation.

Applied Thermal Engineering, Volume 138, 25 June 2018, Pages 72-82

Thermal deformation distributions

Pressure deformation distributions

Deformation distributions under coupling action

ORC system simulation

Powertrain system simulation

- Both Engine and ORC system developed in GT-suite separately
- Two models dynamically coupled
 - Forward: exhaust mass flow rate and temperature
 - Backward: back pressure
- Air cooling vs. water cooling for the ORC system condenser.

ORC system GT-SUITE model

Applied Thermal Engineering 115 (2017) 221–228 Int. J. of Energy Research, 2017 Volume41, Issue15

Vehicle simulation

- Powertrain dynamic model was expanded to consider vehicle operation.
- Considered vehicle speed \rightarrow engine operation by gear selection.
- Impact of engine speed on ORC cooling considered.

ORC system simulation

Vehicle simulation

- Powertrain dynamic model was expanded to consider vehicle operation.
- Considered vehicle speed \rightarrow engine operation by gear selection.

Engine torque (N·m)

Engine torque (N·m)

- Impact of engine speed on ORC cooling considered.
- not always beneficial in all conditions
- Maximum extra power
 5.7 kW, fuel benefit nearly
 5 g/kWh
- May increase engine backpressure, thus negative impact to engine operation
- Aftertreatment system not yet considered

- ORC based waste heat recovery systems have good potential to considerably improve system efficiency
- A 5% efficiency improvement is likely achievable without an over complicated system
- Negative impact on engine operation back pressure, aftertreatment system – must be carefully considered
- As the key energy conversion device, the expander plays a critical role – optimisation still needed

Thank you! Q&A

Guohong tian: g.tian@surrey.ac.uk http://www.surrey.ac.uk/mes/people/dr_guohong_tian/ https://www.researchgate.net/profile/Guohong_Tian