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Mechanical Engineering Sciences Dept. (MES)

Biomedical Fluids Materials

Automotive Engineering Research Centre

¢ Vehicle dynamics control including automated driving

e Control of transmission systems for internal-combustion-
engine-driven vehicles, hybrid electric vehicles (HEVs)
and battery electric vehicles (BEVs)

o Efficiency and emissions improvement for vehicle
powertrain system

e Advanced energy management and brake regeneration
strategies for HEVs and BEVs

e Hybrid energy storage systems

 Tyre modelling

Academic team:

e Prof Aldo Sorniotti (Transmission)

Dr Patrick Gruber (Tyre)

Dr Guohong Tian (Powertrain)

Dr Saber Fallah (Control)

Dr Ahu Hartavi Karci (Electric machine)
Dr Teng Zhang (Battery)

Dr Eric Lo (Aerodynamics)

Dr Davide Tavernini

Dr Umberto Montanaro
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Challenges of modern internal combustion engines SURREY

THERMAL PROPULSION SYSTEMS

DRIVERS Tailpipe €Oz and air quality emission limits Trand towards very low CO2 and air quality emissions limits, zero emission zones, LCA

TARGETS* Currant status 2025 targets 2035 targats
Light duty brake themmal efficiancy 42 % 48 % E3¥%

Heavy duty brake thermal efficiency 47 % 55 60 %
v v

. atings, thermal managemeant and combustion systems designed for low heat loss
THERMAL EFFICIENCY

Flaxible CR and valve trol anablin linder deact. & deep Miller/Atkinson cycles

Light duty oriented ic combustion e.g. lean burn, HCCI, water injection

_ Hybrid-focussed power units 2.9, camless engine, fuel cell

Reduced heat loss e.g. coatings, thermal management, combustion phasing

» Lower temparature comb 4
+

Heavy duty orientad

———————————————————
Exhaust heat recovery | ocompounding, Crganic Rankine Cycle) » Integrated heat recovery from multiple heat sources

—————————————————————
Engine optimisad for availabla fuels i.e. diesel, gascline, natural gas Engine accepting to a wide range of fuels e.g. synfusls, Hz, advanced fossil

Fuelling

Flexible fuel systems e.g. rate shaping, multiple injection, nozzle geometry
Advanced lubrication and lightweighting via design/manuf. and Al Mg, Ti
L |

SYSTEM EFFICIENCY
On beoard reforming, COz capture
Engine systams and control
Advanced powertrain control
Electrified light duty ancillaries (48v), reduced par
Hybrid systems for effective recovery 2.9. 48v, KERS Co-developad engine and hybrid system

Enabling drivatrain 5Y sterms I |
Manual trans| ns replaced by 10+ speed auto, shift magmt. and e-clutch Ce eloped HD-focusad engine and auto, no torqua convertor

DESIGN AND Design for disassembly and recycling Design for low life cycle impact i.e. incl. embedded impacts
MANUFACTURING ’ MNext gen. manufacturing incl. additive layer, metal inj on moulding, metal feams

il il il e, il
2015 2020 2025 2030 2035

THE ROADMAP REPORT, produced by APC



High-efficiency heavy duty diesel engine technical map g“i‘)’Eﬁsl'{TE%F

Goal: 5% brake thermal efficiency

=0 f

-~
3
Tt
=
[¥)
C
o
N
E
a
E
w45
£
E=l
a
E 4
m
| ™
0
a
£
5

44

TARGET STATUE PLAM STATUS PLAN STATUE FLAM STATUS

Cummins Caimler Mavistar Yolvo

Enerav Recoverv| B Aftertreatment M Pumpcina B Friction B Combustion H Baseline

Mo g No Yoz

Engine downsizing

Engine dewnspeeding fas Yes Mo s
-~ Automated Automated Cheal-rmode Dual-clutch
Tra rastan manual mianual Fiylorid automated manual
S . Full {series/
Hybridization Mo Mild parallel) Mo
Organic Rankine cycle i Yes (alectric) No s
{rmechanical)
Turbocompounding Mo Mo Yes (electric) Yes (mechanical)

* Hybridization can be described In terms of a "mild™ or “full” relative power rating of the electric mobor .
with respect to the Internal combustion engina. Corning Incorporated
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IC engine energy balance SURREY

Note: In general, Q-Eﬁﬁ_cmler ig aniniemal
energy flow: in the single- coolani-loop
system, it s combined with tf?,;mﬂ_r and
rejected fo ambient via the radiaior; in the
two-coolantioop system, it is rejecied via
the seconda rv radiator.
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ORC based WHS for IC engines SURREY

— Relatively mature
technology

Relatively low cost
— Relatively complex el -

— Reverse effect on engines -m Electricity

— Relatively low efficiency T 9 TR URT SO E RN wh! L1500
(<10%) Air In -.r |

\ — Optimisation potential
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Working fluid selection SURREY

Dry fluid vs wet fluid

T4 T4 cpP T4 CP
— For ORC, dry or ok
isentropic fluid is
superior over wet SN | — v
- Organic fluid over water > > >

Other characteristics

— Chemically stable

— Non-toxic, non-corrosive

— Inflammable

— Environmental friendly
Mixture fluids have good potentials
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Scroll expander design and optimisation SURREY

« Key component to convert thermal energy to mechanical work
« Power range for vehicular WHR application is approximately 10 kW

« Scroll expander can achieve about 60-70%
Isentropic efficiency.

Scroll wra

Applied Thermal Engineering, Volume 141, August 2018, Pages 1020-1034
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Scroll expander design and optimisation SURREY

Internal flow simulation P —— —

Novel variable wall thickness design
3D unstructured computational grid

Dynamic mesh technology including smoothing/
remeshing schemes and user-defined-functions (UDF)

Suction pipe

£
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Scroll expander optimisation SURREY

Fluid-thermal-solid coupling analysis

« Coupled simulation to investigate the
deformation which is important for
sealing and cooling design.

* Thermal deformation predominates but
also need to consider pressure and
inertial force deformation Thermal deformation distributions

\‘l, AN N\ Y
F luid-lholid
C°“"'"l‘g model Pressure deformation distributions

Fluid domain

Fixed scroll plate solid
Computational domains

Applied Thermal Engineering, Volume 138, 25 June 2018, Pages 72-82 Deformation distributions under coupling action
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ORC system simulation SURREY

Powertrain system simulation

« Both Engine and ORC system developed in GT-suite separately
« Two models dynamically coupled R

 Forward: exhaust mass flow rate
and temperature

« Backward: back pressure
« Air cooling vs. water cooling for the

RO R

er
Com essor ll
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Applied Thermal Engineering 115 (2017) 221-228  Int. J. of Energy Research, 2017 Volume41, Issue15 ORCaystom GI-SLITEmodel
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ORC system simulation SURREY

Vehicle simulation

« Powertrain dynamic model was expanded to consider vehicle operation.
« Considered vehicle speed - engine operation by gear selection.
« Impact of engine speed on ORC cooling considered.
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Applied Thermal Engineering 128 (2018) 1322-1330
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ORC system simulation SURREY

Vehicle simulation

« Powertrain dynamic model was expanded to consider vehicle operation.
« Considered vehicle speed - engine operation by gear selection.
* Impact of engine speed on ORC cooling considered.

® nOt alwayS benefICIal In a” Lo Net power output improvement Profit of truck with ORC system(kW)
- 1500 + for the case of R123(kW) L
conditions .
¢ Maximum extra power 2
5.7 kW, fuel benefit nearly 3
5 g/kWh
« May increase engine back- N
pressure, thus negative 1200 1400 1600 1800 2000 1300 o TR
. . . Engine speed (r/min) Engine speed (r/min)
|mpaCt fo engine Operatlon 1600, 95

BSFC reduction BSFC reduction (g/(kW-h))

for the case of R123(g/(kW-h))

« Aftertreatment system not
yet considered

Engine torque (N-m)

Truck speed (km/h)

.20
1'7\

1400 1600 1800
Engine speed (r/min)

700 o — ‘ . .
1200 2000 oo 1400 1600 1800 2000

Engine speed (r/min)

Applied Thermal Engineering 128 (2018) 1322-1330
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 ORC based waste heat recovery systems have good
potential to considerably improve system efficiency

+ A 5% efficiency improvement is likely achievable without
an over complicated system

* Negative impact on engine operation — back pressure,
aftertreatment system — must be carefully considered

» As the key energy conversion device, the expander plays
a critical role — optimisation still needed
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