

Modeling and operation of scalable tubular microbial electrochemical technologies for the enhanced reduction of Co2 to liquid fuels

Researcher links UK-Russia workshop November 19th 2018

Iain Michie

Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Mid-Glamorgan, CF37 1DL, UK

٠

South Wales Prifysgol De Cymru

- SERC is a multidisciplinary research centre, combining • biology, chemistry, physics and engineering disciplines via a team with significant academic and industrial experience
- Focus on addressing major energy and environmental R&D challenges
- Emphasis on applied R&D, but with key areas of basic research
- Laboratory Facilities at Glyntaff (Pontypridd) and Baglan
- Current funders and projects including; ٠

Lifes-CO₂R - CO₂ reduction to formate

University of South Wales Prifysgol De Cymru

Project

- Optimisation of **power** from relevant substrates
- Optimisation of cathodic systems for CO₂ reduction to formate
- Optimisation of **modular reactor configuration**, with attention to **materials and adsorption**
- Optimisation of **SimCell system** for **alkanes** from formate
- Integration of SimCell and Microbial Electrochem Cells, from simulation to pilot
- Process integration with LCA and Policy Assessment

Issues...

- Microbial rates and specificity
- Materials
- Reactor limitations
- Scale-up

Comparison of Microbial fuel cells and Microbial Electrolysis Cells

Wastewater flow into the anode

Wastewater flow into the anode/cathode?

Optimisation and Actuation

Complex interaction of co-dependent factors will drive performance

Design and scale-up: Implications for control

- Limitation on geometry and relationship to ohmic losses
- Modularization of some type
- Efficiently getting complex substrate to and removing products from microbial populations
- Hydraulic and gas diffusion sealing
- Cost effectiveness: substrates, products/ functions, CAPEX and OPEX

Current or Current density

Continuous Operation of MFCs using Sucrose

- Sucrose (sugar) as the feed
 - Fermentable
 - At different concentrations
- HRT: 13.6 hr, pH 7.0, ~20°C
- Duplicated
- Able to get similar power from each module
- Able to replicate

Replicating reactors – scale up

- Twice doubling its scale to 1 Lt
- Power recovery and COD removal comparable
- Power recovery and organic removal could be maximized by extending length
- Could simultaneously control effluent quality and power, facilitating scale-up.

Scaling the anode performance

Volume of single tube (empty bed) = 1.5 L; Power density = 30W/m³ have been seen; Length = 1 m; Number of Anodes per meter = 5

Volume of single tube (empty bed) = 0.88 L; Power density = 6.1 W/m^3 ; Length = 1 m; Number of Anodes per meter = 4

© University of South Wales

F

ENVIRONM RESEARCH CENT

RE

Materials, design and mixing

- Biocatalyst to substrate contact involves economics as much as performance.
- HRT affects inhibitory products, flow velocities, mixing /mass transfer
- Turbulence and the flow direction affect performance.
- Materials are set, but biofilm, sloghing, even internal impedance conceivably affected.

Kim, J.R., H. Boghani, N. Amini, I. K. Aguey-Zinsou, Michie, R. M. Dinsdale, A. J. Guwy, X. Guo, G. C. Premier. 2012. Porous anodes with helical flow pathways in bioelectrochemical systems: The effects of fluid dynamics and operating regimes. Journal of Power Sources.

Enhancing mass transport in helical electrodes

•Fluid flow in free and porous medium (Stokes-Brinkmann equations)

$$\begin{split} & \frac{\rho}{\varepsilon_{\rm p}} \Big(\mathbf{u} \cdot \nabla \frac{\mathbf{u}}{\varepsilon_{\rm p}} \Big) = \nabla \cdot \left[-p\mathbf{I} + \frac{\mu}{\varepsilon_{\rm p}} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2\mu}{3\varepsilon_{\rm p}} (\nabla \cdot \mathbf{u})\mathbf{I} \right] - \frac{\mu}{K_{\rm br}} \mathbf{u} \\ & \rho \nabla \cdot \mathbf{u} = \mathbf{0} \end{split}$$

•Mass transport of diluted chemical species (Fick's law for diffusive term)

Symmetry (surfaces)

 $\nabla \cdot (-D_j \nabla c_j) + \mathbf{u} \cdot \nabla c_j = R_j$ $\mathbf{N}_i = -D_j \nabla c_j + \mathbf{u} c_j$

 $R_{ac}^{e} = \frac{R_{ac,max}^{e} \cdot c_{ac}}{K_{ac}^{e} + c_{ac}}$

 $S_{outlet} = \frac{\sum_{i=1}^{n} (c_i - c_{av})^2 \text{ at outlet}}{\sum_{i=1}^{n} (c_i - c_{av})^2 \text{ at inlet}}$

Mixing ratio

•Acetate degradation according to monod kinetics

Model Set-up

Control as a mechanism to improve metabolic processes

Maximum power point tracking (mppt)

We postulated – that it was possible to enhance the power generated by an MFC/BES by:

- Tracking the peak power to achieve impedence matching - load and internal impedances equal
- And... maintaining a persistent increasing electrical loading pressure on electrogens -
- So altering biofilm ecology for high performing electrogens.

Control as a means to improve performance

- •MPPT is beneficial to BES
- •The control strategy imposes selection pressures
- •Favouring electrogenic behaviour
- •5 times more energy as electricity from the controlled MFC

Premier GC, Kim JR, Michie I, Dinsdale R, Guwy A. 2011. Automatic control of load increases power and efficiency in a microbial fuel cell. Journal of Power Sources 196:2013-2019.

Controlling MFCs in stacks

• The issues

- Power quality is low (voltage). Reversals have been noted when stacking (Oh & Logan, 2007; leropoulous et al, 2009)
- Large stacks with variable
 OLR, pH etc will be difficult
 to equilibrate.
- Connectivity and control were considered (Fig 1) to improve the cell stability compared to Fig 2.
- Causing an imbalance in the stack by supplying 2mM Ac to MFC1&3 and 0.5 mM to MFC2 – could investigate stability/reversal.

Boghani, H. C., Papaharalabos, G., Fradler, K., Michie, I., Dinsdale, R. M., Guwy, A. J., leropoulos, I., Greenman, J., and Premier, G. C. (2014) Controlling for peak power extraction from microbial fuel cells can increase stack potential and avoid cell reversal, *Journal of Power Sources*.

Comsol - Modeling Tubular MFC

Finite element analysis to help understand BES

anolyte-anode-IEM-air cathode

Concentration of Oxygen around the Cathode

Concentration of Acetate in anode chamber

Modeling MFCs

Acetate concentration profile due to flow anode Increasing 1mM acetate concentrations (inflow) 10mM 40 mM **Direction of anodic flow**

CONCLUSIONS

- Control and design strategies to enhance system performance
- Mechanistic models allow for the interpretation of interactions and behaviors in BES.
- BES models can be used for preliminary scale-up design and feasibility studies.
- Use in the design and validation of scaled integrated BES for the production of chemicals from CO2

Thank you! Any questions

