

Applied Algal biotechnology for the waste remediation

Dr Alla Silkina

Swansea University

Centre for Sustainable Aquatic Research

a.silkina@Swansea.ac.uk

https://algaewales.wordpress.com/

Algal research at Swansea

- History of nearly 4 decades.
- Originally pure physiology (SERC), latterly environmental (NERC), now applied through various routes, most involving industry.
- One of the very few remaining centres for the study of whole growth & physiology and also with onsite process engineering facilities
- factors essential for commercial production.
- CSAR now has the largest research photo-bioreactor capacity in the UK ...
- .. supported by analytical methods for bulk determinants and ca. £500k equipment
- ... together with research for harvesting and processing
- ... and supplying data for modelling.

Centre for Sustainable Aquatic Research – algal production facilities

- Algal collections ~ 25 species for mass cultivation (Sterile cultures 20ml → 2L → 20L Carboys)
- 20 x 100L batch culture capacity, controlled environment lab
- 1 x 400L Biofences, controlled environment lab

- Selective Separation & Product Recovery
- Advanced Surface & Fluid Characterisation
- Novel Membrane & Structure
 Fabrication

Membranology - spin out company http://membranology.com/

Microalgae Production

Integrated Algal Biomass/Bioenergy Modelling

- Identifying optimal species configuration for selection
- Designing GMO configurations
- Optimisation for production
- Risk analysis
- Life cycle analysis

Algal projects at Swansea

AlgaeKTC

- Algal Biomass Production and Processing:
 Modelling, Optimisation and Economic and Life
 Cycle Analyses primarily aimed at oil/energy
 production system (Carbon Trust; SU, Bangor U,
 PML; £500k;)
- Algal Biotech KTC industry facing (WAG A4B; £380k)
- ACCOMPLISH coupled flue gas and waste water (TATA + Welsh Water+ Axium; £400k)

European and International projects

- ShellPlant intensive microalgae cultivation as feed for shell(with Norway, Portugal, Spain; £235k to CSAR)
- BioAlgaeSorb microalgae for waste treatment, energy/fuel production and biomaterials (with Belgium, Greece, Italy, Netherlands, Norway; £653k to CSAR)
- EnAlgae INTERREG IVB Energetic Algae, pilot and networking group (7 countries), CSAR lead partner; (£1.6m to SU, total project size £13m)
- ALG-AD INTERREG networking UK, France, Belgium £5m project (£1.8m to SU)
- **Phycopigments** Newton Mexico-UK Innovate UK project (£600K total, £120 to CSAR)

Bioremediation

- Human activity –agricultural, municipal and industrial waste streams
- Eutrophication
- Major requirement to waste treatment
 - removal nutrients and toxic metals
- N, P, CO2
- Microalgae cultivation- alternative solution to conventional waste water treatment technologies

Waste remediation

- Test suitability of waste stream use: agricultural, fish farm and AD municipal waste as nutrients source
- Compare the Nitrogen and Phosphorus uptake by different species in different cultivation PBR
- Compare the productivity of species
- Provide the data set for modelling tool

Bioremediation – Why use waste?

- A number of cost/efficiency advantages
- Environmental advantages
- Phosphate sources are scarcer and will be economically unviable to mine by 2030
- Waste nutrients source can help to reduce the mining of • phosphorous and recycle this valuable mineral

- Difficulties of preparation (e.g. filtration) associated with using liquid and solid waste sources
- Liquid wastes- high in Ammonia -toxic to algae
- Not have an optimal nutrient profile
- Algae need adaptation to the waste source during initial cultivation

Species used

- Nannochloropsis oceanica
- Scenedesmus sp.

• Isolate from steel industrial site: Franceia amphitricha

media formulation	μMol L-1 N	μmol L -1P	Ratio (N:P)	mL/L	Final concentration Ν (μΜοΙ L ⁻¹)	Final concentration P (μMol L ⁻¹)	Ratio
Agricultural waste	55400	4359	12.7	15.9	880.8	69.3	12.7
Trout waste	8870	57468	24.5	1.92	17(+882)	110.3	8.15
AD municipal waste	71394	4486	15.9	20	1428	89.7	15.9
F/2				1	882	36.2	24.5

Experimental conditions

- 15-25 days of cultivation in tubular PBR
- Batch and Semi continuous mode
- Close monitoring of biological parameters cells, biovolume, cellular C:N:P:Chl
- Water chemistry and biochemistry analysis –
 DIN, DIP, pH, T, PFD; lipid, carbohydrates
- Log-in datapH, T; light

Results of growth

- Cultures were able to grow using waste nutrients
- Cultures again entered a growth phase after partial harvest growth rate

Nutrient uptake by algae

Nutrient uptake during semi-continuous cultivation of *Scenedesmus sp.*

Nutrient uptake during semi-continuous cultivation of *Nannochloropsis oceanica*

- Waste nutrients are gradually taken up by the algae during cultivation
- P and N uptake (90% after 5 days of cultivation)

Biochemical composition

- Cultures were successfully grow using waste nutrients
- Nutrient supply after partial harvest boost growth of culture
- Potential exploitation of algal biomass

Design of PBR comparison

- Vertical and horizontal
- Tubular reactors were compared
- In control and waste remediation condition, productivity is higher in vertical system with Ø 110 mm (Causerma et al, 2011)
- The specific biomass (e.g. reach on lipids) quickly achieved on horizontal tubular PBRØ 43 mm

ACCOMPLISH

- 3 year project supported by Welsh Government
- Overall value of £670,000

Development of a mobile algal growth laboratory (AGL) at *Tata Steel Strip Products UK* for testing of algal carbon capture

Biomass production and harvesting on waste sources using *Axium Process LTD*'s pilot TF membrane rigs

Assessment of algal biomass feedstocks using *Dŵr Cymru Welsh Water*

Anaerobic Digestion (AD) site specific conditions

Growth using AD municipal waste Fed Batch

UK Environment Agency (2016) Standard:

- TN 10 mg/L
- TP 1 mg/L

Nutrients uptake

Average nutrient (standard chemical nutrients) removal

Average nutrient (municipal waste) removal

Biochemical analysis of algal biomass grown using the different form of media.

Nutrients used	% Cellular	S.D.	% Cellular	S.D.	% Cellular	S.D.
	Lipid		Carbohydrate		Pigments	
Standard F/2 media	11.15	0.4	4	0.12	4.87	0.15
Municipal waste	7.9	0.2	18.3	2.3	4.66	0.73
media						

Energy production

- Biomethane production test
- Algal biomass grown on AD municipal waste

Comparable results of biomethane production with alternative feed stock

The Biomethane yield 350 CH₄ mLg⁻¹

Summary

Species	Waste nutrient source	N uptake rate (μ Mol L ⁻¹)	P uptake rate (μ Mol L ⁻¹)	Max productivit y (g L ⁻¹)	Duration of trial (days)	System PBR
Scenedesmus	Agriculture	146	7.09	1.6	18	600
sp.	(cow waste)					
N. oceanica	Agriculture	186	8.1	1.6	18	600
	(cow waste)					
N. oceanica	Aquaculture	-	2.73	3	15	1500
	(trout farm					
	waste)					
ACCOMPLISH	AD municipal	36	0.74	1.1	16	1500
strain	waste					

Summary

Table 2: Data from trials performed at Swansea University. Treated effluent was from a municipal waste source.

	Unit	Influent	Effluent	% Recovered	Retention time
TON	μmol L ⁻¹	984.772±93	0.684±4	99.5%	5 days
Nitrate	μmol L ⁻¹	181.64±23	0.52±1	99%	5 days
Nitrite	μmol L ⁻¹	0.048±0.0012	0.164 ±0.024	0%	5 days
Ammonia	μmol L ⁻¹	802.96±69	0±2	100%	5 days
Total Phosphorous	μmol L ⁻¹	690.36±83	0±4	100%	4 days

In-silico approaches, Modelling

- Identifying optimal species configuration for growth
- Optimisation for production
- Risk analysis
- Life cycle analysis

Cost Breakdown

- Electric is mainly lighting to give a back-ground level
- Harvesting is by filtration (~¼)
- Media includes N, trace metals and vitamins (assumes natural sw)
- Not included pH & gas exchange, temperature control, rent & depreciation

Industrial Biotechnology & Biorefinery

- Algal biotechnology for fuels, CO₂ mitigation
- Biorefineries for algal biomass, incl high value non-food
- Systems approach in silico modelling to optimise bioprocesses and biomass compositions

Food Security

- Sustainable aquaculture feeds
- Aquaculture animal health and welfare

In summary ...

- Minimise use of virgin resources
- Maximise use of wastes (inc minimising fines for waste generation)
- Recycling/upgrading feedstocks

Спасибо за внимание!

Dr Alla Silkina

a.silkina@swansea.ac.uk