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Background — Dual-Injection mn
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* To investigate the effects of the application of
separate systems of direct injection of hydrous
ethanol and commercial diesel oil (dual injection),
containing 8% of biodiesel (B8), in a diesel engine.

Ethanol injector Diesel oil injector
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State-of-the-art
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e Several studies showed the diesel engine performance and
emissions using blends and fumigation technique:

* Ethanol-diesel blends technique

e Ethanol fumigation

O

O

Up to 25% of diesel il
replacement;
Limitation: blends solubility and

ethanol properties;
Reduction of NOx emissions in
large operation range.

©)

Up to 50% of diesel ol
replacement;
Limitation: knock ocurrence;

Can reduce NOx emissions;
Increase THC emissions;




State-of-the-art

UNIVERSITY OF LEEDS

» There are few experimental works available in literature exploring the
dual fuel technique, probably due to the difficulty in install the ethanol
Injection apparatus in an original diesel engine head.

* Up to 90% of diesel oil replacement

» By direct injecting both fuels, a more controlled distribution is possible
through spray targeting, potentially reducing the amount of unburned
fuel in crevice regions (REITZ and DURAISAMY; 2015).

Alcohol direct I Diesel pilot
injection injection




Background — EGR, NOx and Soot pn
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* EGR has potential to reduce NOX emission of spark ignition and
compression ignition engines and to realize low temperature combustion
(LTC) technique

* Biodiesel and EGR have been studied in many researches, but the
combination of these two technologies is relatively few.

* An improved understanding of the mechanisms responsible for the high
NOX emissions generated during biodiesel and diesel oil combustion could
lead to inexpensive and effective mitigation strategies.



Experimental Setup
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MWM 229-4 Diesel Engine Setup




Experimental apparatus
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EGR system
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% Table 1: Diesel engine specifications
O :_3. E VE_PE Manufacture/Type MWM 229/4
E = m Cycle Four strokes
Ll « — Diesel oil injection Direct
| % Bore x stroke 102 mm x 120 mm
E Number of cylinders 4, m line
— Compression ratio 17:1
—l Total displacement 3.922 L
Rated Power 44 kW
Intake system Naturally aspirated
Start of injection 23°BTDC




Methodology - Dual injection
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Use of EGR: combustion control and NOx reduction (10%);
Use of diesel oil with 8% of biodiesel (B8);

Diesel oil nominal replacement ratio of 60%.

Nomenclature Biodiesel Ethanol EGR

(%) (%) (%)
B8 8% 0% 0%
B8 + EGR 8% 0% 10%
BBE60 8% 60% 0%
BBE60 + EGR 8% 60%  10%




Numericla Experiment
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+* ANSYS Forte 18.1 was used to simulate the combustion process of a diesel engine

Turbulence model

RNG x-€ model

Breakup model

Collision model

Spray/wall interaction model
Heat transfer model

Evaporation model

Combustion model
Turbulence/chemistry interaction
Soot model

NOx formation model

KH-RT coupled with gas-jet model
Collision radius of mmfluence model

Naber and Reitz model

Improved law-oi-the-wall

Discrete multi-component

Detailed chemistry

Mixing time scale model

Hiroyasu soot formation and Nagle/
Strickland-Constable oxidation models
Thermal and prompt NO

The submodels employed in the Ansys Forte software package
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Numericla Experiment
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+* ANSYS Forte 18.1 was used to simulate the combustion process of a diesel engine

Temperatura (K)
390 627 863 1100
| a

121.5

Combustion chamber model (in mm), 440,000 structured cells at BDC, and 41,000 cells at the TDC



Results — Validation
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Presséao (kPa)

Comparison between numerical and experimental results — In-cylinder pressure.
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Results — Numerical Validation
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Comparison between numerical and experimental results — NO and NOy emissions.
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Results — spfc and fce
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Specific fuel consumption and fuel conversion efficiency for different engine operating conditions
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Results — Pressure, RoHR "
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Results —CO, and CO
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Results =0, and THC
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Results —=NO and NOx n
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Results — Numerical Experiment
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Position | Fuel/air equivalence ratio Temperature NO
(ATDC -® (K) (mass fraction)
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Results — Numerical Experiment
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Results — Numerical Experiment
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Results
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Conclusions n
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* 10% cold EGR slightly affected the engine specific fuel
consumption, and proved to be effective in reduce
the NOX emissions, up to 56%.

* The numerical study showed that the NO formation in
the engine is mainly due to the thermal mechanism
and that the EGR use inhibits the NO formation by the
reduction of the in-cylinder temperature and O,
concentration.

* The EGR use reduced THC emissions up to 52%.
However, CO, and CO emissions increased when using
EGR, up to 19% and 155%, respectively.
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