

Moscow Automobile and Road Construction State Technical University (MADI)

ENERGY EFFICIENCY OF AUTONOMOUS VEHICLES ON HILLY ROADS

Dr.Sc., Prof. Sergey Shadrin MADI, "Cars" Chair

UK-Russia Workshop, 19-22 Nov. 2018

Agenda

- 1. Introduction:
- MADI Overview
- "Cars" Chair Research Activities
- 2. BaseTracK Project
- 3. Energy Consumption Efficiency on Hilly Roads
- 4. Results & Discussion

"Cars" Chair Research Activities – Autonomous Driving

Automated GAZ-322132:

Autonomous Driving Technologies Testing Platform (Chevrolet Orlando):

"Cars" Chair Research Activities – Road Tests

Measuring equipment: Corrsys Datron, Kistler, IMC, Intrepid Control Systems, JAVAD navigation. Proving grounds: MADI, NAMI.

Time	Tx	Br	Description	ArbId/Header	Len	DataBytes	Network	
19.993 ms		1	HS CAN \$17845280	x17845280	7	02 EC 55 6E 40 C0 C8	HS CAN	
16.109 ms			HS CAN \$12E9E6A0	x12E9E6A0	8	00 C9 00 C9 06 C8 00 C2	HS CAN	
149.644 ms			HS CAN \$17E80420	×17E80420	6	3F 00 11 43 00 00	HS CAN	
9.880 ms			HS CAN \$1F1F0	× 1F 1F0	8	41 28 00 BF FF 07 FF	HS CAN	
19.376 ms			HS CAN \$8D5FDF0	xBD5FDF0	7	00 00 70 14 00 00 FE	HS CAN	
20.029 ms			HS CAN \$17880030	×17880030	1	20	HS CAN	
10.148 ms			HS CAN \$4C1F6B0	x4C1F6B0	6	0F 26 07 05 05 FC	HS CAN	
14.50	14.503 ms		HS CAN \$E3052A0	xE3052A0	6	42 3C 1E 00 87 02	HS CAN	
31.14	31.140 ms		HS CAN \$17CCE6A0	x17CCE6A0	6	40 CS 1C 00 40 C8	HS CAN	
10.07	10.078 ms		HS CAN \$979BAB0	x979BAB0	8	88 80 00 C6 4C 77 FF 0C	HS CAN	
20.05	20.055 ms		HS CAN \$1781FFF0	x1781FFF0	8	00 00 01 1C 84 15 36 10	HS CAN	
10.01	10.014 ms 20.060 ms 19.985 ms		HS CAN \$71C0AA0	x71C0AA0 6		04 0C 04 0C 3C 0C	HS CAN	
20.06			MS CAN \$4580BD0	x4580BD0 8		00 73 07 1 80 00 FA 58	MS CAN	
19.98			HS CAN \$17A9FFE0	x17A9FFE0 8		00 23 500 F3 5 FC	HS CAN	
39.97	39.972 ms		MS CAN \$ADB08D0	xAD808D0	8	03 8C 88 00 17 11 DC 27	MS CAN	
20.00	20.005 ms		HS CAN \$17ADBF70	×17ADBF70	8	00 30 00 SF FE 00 00 A6	HS CAN	
29.88	29.882 ms		MS CAN \$8AC0AB0	x8AC0AB0	7	00 08 03 00 01 02 00	MS CAN	
19.37	19.378 ms		HS CAN \$108CF1F0	×108CF1F0	8	0C C0 FF 04 2 C8 21 C8	HS CAN	
19.378 ms			HS CAN \$1544F9F0	x1544F9F0	8	80 00 80 00 80 00 80 00	HS CAN	
19.694 ms			MS CAN \$68408E0	x68408E0	8	00 3F 39 3C F4 01 27 38	MS CAN	
25.25	1 ms		HS CAN \$178DFFE0	x17EDFFE0	5	40 20 22 F2 07	HS CAN	

"Cars" Chair Research Activities – AV's Testing System

ADAS virtual and road testing. Safety assessment of autonomous road vehicles with respect to the peculiarities of road and weather-climatic conditions in Russia.

5

BaseTrack Project – Autonomous Driving

BASETRACK

1) SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, U.S.A.: SAE, 30 p., 2016. 6

Definition

BASETRACK

<u>basetrack</u> – an ideal track with a high-precision spatial driving route that contains additional blocks that provide optimal control of the vehicle based on the requested transport task and traffic conditions.

The basetrack structure includes:

- A dataset of the kinematic parameters of the vehicle's motion;
- A navigation dataset;
- A dataset of referenced control actions;
- A dataset of road characteristics;
- A dataset of driving conditions with optimality criteria.

Scheme for Basetrack Driving in Autonomous Mode

Example of Technology Implementation

BASETRACK

Basetrack cost: database access by subscription The experimental car was equipped with the following <u>hardware</u>:

- An electronic systems control module
- A brake pedal servo drive
- A hybrid navigation system (a satellite RTK DGPS

navigation system with inertial measurement unit and wheels-based navigation)

- An Ethernet network
- An autonomous driving module (an Android smartphone, with a Wi-Fi connection to the vehicle's Ethernet network, with uploaded basetracks)

Example of Technology Implementation

Race on Ice Road

Energy Consumption Efficiency on Hilly Roads

Federal highway altitudes (Moscow-Volokolamsk)

Fuel Consumption Model Validation

Simulation Results With and Without ISC BASETRACK **{IC Engine}**

Intelligent Speed Control

In both driving directions of the whole route, we compared two driving modes: 1) driving with intelligent speed control with speed regulation algorithm within 80...110 km/h, depending on whether the route has an upward or downward slope and 2) driving with a constant velocity as the average velocity of the first case (and therefore the same time).

Simulation Results With and Without ISC BASETRACK {Electric Vehicle}

Energy consumption:
$$P_{total} = P_{bat_{out}} - P_{bat_{in}} = P_{bat_{tractive}} + P_{bat_{aux}} - P_{bat_{in}}$$

$$B_{EV} = \frac{\int \frac{1}{(\eta_t \cdot \eta_m)} \cdot \left[\left(m \cdot f \cdot g \cdot \cos \alpha + \frac{\rho}{2} \cdot c_w \cdot A \cdot v^2 \right) + m \cdot (a + g \cdot \sin \alpha) + B_r \right] \cdot v \cdot dt}{\int v \cdot dt}$$

	Forwar	d direction (10	00 km)	Invers	e direction (10	0 km)	Both ways (200 km)		
Veh. mass, kg	Const.V km/h	80 110 km/h	Econ.,	Const.V km/h	80 110 km/h	Econ.,	Const.V km/h	80 110 km/h	Econ.,
	Energy	Energy	%	Energy	Energy	%	Energy	Energy	%
	cons., kWH	cons., kWH		cons., kWH	cons., kWH		cons., kWH	cons., kWH	
1400	13.28	13.13	-1.06	12.63	12.58	-0.37	25.91	25.72	-0.72
1500	13.68	13.48	-1.45	12.99	12.88	-0.84	26.68	26.37	-1.15
1600	14.09	13.84	-1.83	13.36	13.19	-1.30	27.45	27.02	-1.57
1700	14.51	14.19	-2.21	13.73	13.49	-1.77	28.24	27.68	-1.99
1800	14.93	14.54	-2.58	14.11	13.79	-2.23	29.03	28.33	-2.41

Results & Discussion

1. Fuel consumption optimization for autonomous driving mode on a hilly test road over a distance of 200 km resulted in up to 4.1% savings for experimental vehicle and up to 2.4% for equivalent electric vehicle.

2. The economic and ecological advantages of the proposed basetrack concept are based on the correlation between the optimized control actions in autonomous driving mode and the requested transport task.

3. For the prototype of an autonomous road vehicle, a speed of 130 km/h was achieved for stable driving in the corridor of road lane without the use of road-marking recognition systems.

4. It is essential to solve the issues in optimal vehicle control for the autonomous driving mode in simulation with reference to a precise geoinformation environment.

THANK YOU FOR YOUR ATTENTION!

<u>shadrin@madi.ru</u> <u>dr.sergey.shadrin@gmail.com</u> +7 (925) 507-81-91