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Testing of waste coffee 

ground derived biodiesel



How do emissions impact on fuels?

Euro 6 (2014 – 2021)

PN limit introduced

Further NOx and PM

reductions

Euro 7 (2022 –) Likely 

further significant 

reductions in PN, PM 

and NOx

GHG Air quality
10% of all road 

transport fuels from 

renewable sources by 

20201

3% must be from non-

food crop sources2

1Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources
2DIRECTIVE (EU) 2015/1513 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.
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Fuel molecular structure
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Low volume fuel system
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Hellier, P., Ladommatos, N., Allan, R., Payne, M., & Rogerson, J. (2011). The Impact 

of Saturated and Unsaturated Fuel Molecules on Diesel Combustion and Exhaust 

Emissions. SAE International Journal of Fuels and Lubricants, 5(1), 106–122. 

https://doi.org/10.4271/2011-01-1922



1. Vessel

2. Filter 

housing

3. Valves

4. Injector 

feed

5. Injector 

spill



How much to process biomass?

- Additional 

processing:
- Reactants (H2)

- Energy

- Incremental

changes to 

molecular 

structure.

- Improvements 

in combustion 

and emissions 

justified?
Adapted from R. Mariscal, P. Maireles-Torres, M. 

Ojeda, I. Sádaba, and M. López Granados, 

“Furfural: a renewable and versatile platform 

molecule for the synthesis of chemicals and 

fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 

1144–1189, 2016. doi:10.1039/C5EE02666K.
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SI knock resistance vs. processing
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Talibi, M., Hellier, P., & Ladommatos, N. (2017). Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single 

Cylinder Spark-Ignition Engine. SAE Technical Papers, 2017–Octob, 2017-01-2325. https://doi.org/10.4271/2017-01-2325
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Benzene

Pyrolysis products temperature effects

Lignocellulosic 

biomass

Catalytic pyrolysis

450 ºC to 600 ºC

Toluene

M-xylene

Decreasing

temperature

• Aromatics comprise 80 % of 

liquid fraction.

• Reduced temperatures 

increases proportion of methyl-

benzenes.
Thring RW, Katikaneni SPR, Bakhshi NN. The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst. Fuel Process Technol 2000;62:17–30.

Zhang Y, Bi P, Wang J, Jiang P, Wu X, Xue H, et al. Production of jet and diesel biofuels from renewable lignocellulosic biomass. Appl Energy 2015;150:128–37. 

doi:10.1016/j.apenergy.2015.04.023.
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Minor changes in fuel structure

10

Benzene Toluene M-xylene 1-3-5 

trimethylbenzene Durene

Increasing number of methyl branches on aromatic ring
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Experimental conditions

− 1200 rpm

− 450 bar fuel injection pressure 

− 4 bar  IMEP (injection timing ~700 – 900 μs)

− Constant start of injection SOI = 10.0 CAD BTDC

− Constant start of combustion SOI varied for SOC at TDC



Significant effects on ignition

11

Increasing number of methyl branches

C6H5CH3 + OH* → C6H5CH2* + H2O
Talibi, M., Hellier, P., & Ladommatos, N. (2018). Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 216.

https://doi.org/10.1016/j.fuel.2017.12.045

3 branches
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Benzaldehyde



Fuel effects on NOx emissions

12

- Constant injection timing

↑ ID ↑ PMF  ↑ ID ↓ PHRR ↑ PMF ↑ NOx  ↓ PHRR ↓ NOx

Changes to fuel structure

(e.g. addition of methyl 

branches)

Ignition 

delay

Max. T

Time at T

NOx

Talibi, M., Hellier, P., & Ladommatos, N. (2018). Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 216.

https://doi.org/10.1016/j.fuel.2017.12.045
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Micro-algae GM for fuel design

13
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2 – 3 µm

Light

CO2 (flue gas)

Nutrients (waste water)

Triglycerides

Designer 

hydrocarbons / 

oxygenates
P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, “Combustion and emissions characterisation of terpenes as biofuels produced by 

the micro-algae Synechocystis”, Fuel, Volume 111, September 2013, Pages 670-688
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P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, “Combustion and emissions characterisation of terpenes as biofuels produced by the micro-algae Synechocystis”, Fuel, Volume 111, 

September 2013, Pages 670-688
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P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, “Combustion and emissions characterisation of terpenes as biofuels produced by the micro-algae Synechocystis”, Fuel, Volume 111, 

September 2013, Pages 670-688

Combustion phasing

Experimental conditions

− 1200 rpm

− 450 bar fuel injection pressure 

− 4 bar  IMEP (injection timing ~700 – 900 μs)

− Constant start of injection SOI = 7.5.0 CAD BTDC

-OH→=O



Ignition delay
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NOx emissions

cis

trans
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Ignition 

delay

Max. T

Time at T

NOxLong I.D. 

reduces both



Total particulate mass

Alkyl chain length →   viscosity → fuel air mixing → fuel pyrolysis

Alkyl chain saturation → soot precursors → soot formation

6 DB

6 mPa.s

No fuel bound oxygen
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Individual carbon contribution to PM

Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. An investigation into the conversion of specific carbon atoms in oleic acid and methyl oleate to particulate matter in a diesel engine 

and tube reactor. Fuel. 2015 Aug;153:604–611. 

Oleic acid

Methyl oleate

19
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13C labelled fuel carbon in 

measured engine exhaust PM.



• Oxygenates blended at 10 % mol / mol in n-heptane.

• Oxygen double bond reduces C contribution to soot relative to oxygen single bond.

Oxygen bond type

Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. Quantification of the Fraction of Particulate Matter Derived from a Range of 13 C-Labeled Fuels Blended into Heptane, Studied in a 

Diesel Engine and Tube Reactor. Energy & Fuels. 2016 Sep 15;30(9):7678–7690. 

(g)
(h)(h)
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Polycyclic aromatic hydrocarbons

21

- PAHs adsorbed on particle surface.

- Ultrafine particles (<100 nm) 

penetrate lungs.

(a) Pugmire, R. J., Yan, S., Ma, Z., Solum, M. S., Jiang, Y. J., Eddings, E. G., et al. (n.d.). Soot Formation Process. Department of Chemical & Fuels Engineering, Department of Chemistry, 

University of Utah , http://acerc.byu.edu/News/Conference/2003/Presentations/Pugmire.pdf (retrieved 2-04-2015), (b) Health effect of PAHs (http://www.cleanairegypt.org/air-pollution-and-

aerosols/: retrieved 20-11-2015)

21
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http://acerc.byu.edu/News/Conference/2003/Presentations/Pugmire.pdf


Fuel effects on PAH

22

Dandajeh, H. A., Ladommatos, N., Hellier, P., & Eveleigh, A. (2018). Influence of carbon number of C 1 –C 7 hydrocarbons on PAH formation. Fuel, 228, 

140–151. https://doi.org/10.1016/j.fuel.2018.04.133

22

- Increased temperature reduces PAH (pyrolysis furnace)

- Increasing carbon chain length decreases carcinogenicity

22
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Engine exhaust PAH

23
23

• n-heptane (H), toluene (T) and methyl decanoate (MD) blends

• Total PAH decreases with increasing toluene

Increasing toluene → Increasing ignition delay, premixed and temperatures

23
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Total PM or PM toxicity?

24
2424

24
FUTURE FUELS, 

ENGINES AND 

EMISSIONS GROUP



Conclusions
− Renewable fuels provide opportunity for molecular design.

− Degree of biomass processing and resultant molecular 

structure corresponds to SI and CI ignition quality.

− NOx is primarily influenced by molecular structure via ignition 

delay and combustion phasing.

− Oxygen bond type impacts significantly on:

− Ignition delay (e.g. GM algae fuels)

− Individual carbon atom PM (13C labelling)

− Total exhaust PAH shows strong temperature dependence.

− PAH per mass of PM shows fuel structure influence.

252525
2525
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Thank you

Questions?
Acknowledgements:

EP/M009424/1 and EP/M007960/1

BP Global Fuels

Contact:- Dr Paul Hellier, Lecturer in Engines and Fuels

Department of Mechanical Engineering, University College London

p.hellier@ucl.ac.uk
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− e.g. Spent coffee grounds contain ~ 15 % lipids

− Recovery process impacts on crude composition.

Food waste to fuels
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− Coffee and date pit methyl esters – conventional alternatives, 
but sustainable feedstocks?

Coffee and Dates (in an engine)
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PAH formation

• In-cylinder sampling during diesel combustion and quantification of 

individual PAH

• Evidence of PAH formation, consumption and oxidation rates varying 

with species

2929
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