Future sustainable fuels: Exploiting waste streams and reducing toxicity of combustion emissions

#### Dr Paul Hellier Department of Mechanical Engineering University College London

Researcher Links UK-Russia Workshop: Scientific and technical grounds of future low-carbon propulsion 19<sup>th</sup> November 2018



## <u>Outline</u>

- 1. Emissions requirements of future fuels
- 2. Methodology:
  - i. Fuel molecular structure
  - ii. Low volume fuel systems
- 3. Structure effects on ignition and NOx:
  - i. Waste biomass conversion
  - ii. Genetically engineered microalgae
- 4. Particulate matter formation and toxicity:
  - . Substructure <sup>13</sup>C labelling
  - ii. Polycyclic aromatic hydrocarbons
- 5. Conclusions



Testing of waste coffee ground derived biodiesel





### How do emissions impact on fuels?

#### <u>GHG</u>

10% of all road transport fuels from renewable sources by 2020<sup>1</sup>

**3%** must be from **nonfood crop** sources<sup>2</sup>

# Air quality

Euro 6 (2014 – **2021**) **PN limit** introduced Further **NOx** and **PM reductions** 



Euro 7 (2022 –) Likely further significant reductions in PN, PM and NOx

<sup>1</sup>Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources <sup>2</sup>DIRECTIVE (EU) 2015/1513 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.



#### **Fuel molecular structure**





#### Low volume fuel system



https://doi.org/10.4271/2011-01-1922





## How much to process biomass?



- Additional processing:
- Reactants (H<sub>2</sub>)
  Energy

**Incremental** changes to molecular structure.

Improvements in combustion and emissions justified?



#### SI knock resistance vs. processing



Knock resistance

Talibi, M., Hellier, P., & Ladommatos, N. (2017). Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine. SAE Technical Papers, 2017–Octob, 2017-01-2325. https://doi.org/10.4271/2017-01-2325

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

#### Pyrolysis products temperature effects



Thring RW, Katikaneni SPR, Bakhshi NN. The production of gasoline range hydrocarbons from Alcell lignin using HZSM-5 catalyst. Fuel Process Technol 2000;62:17–30. Zhang Y, Bi P, Wang J, Jiang P, Wu X, Xue H, et al. Production of jet and diesel biofuels from renewable lignocellulosic biomass. Appl Energy 2015;150:128–37. doi:10.1016/j.apenergy.2015.04.023.



## Minor changes in fuel structure



#### Increasing number of methyl branches on aromatic ring

#### **Experimental conditions**

- 1200 rpm
- 450 bar fuel injection pressure
- 4 bar IMEP (injection timing  $\sim$ 700 900  $\mu$ s)
- Constant start of injection SOI = 10.0 CAD BTDC
- Constant start of combustion SOI varied for SOC at TDC

#### Significant effects on ignition



Talibi, M., Hellier, P., & Ladommatos, N. (2018). Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 216. https://doi.org/10.1016/j.fuel.2017.12.045

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

#### Fuel effects on NOx emissions

- Constant injection timing



Talibi, M., Hellier, P., & Ladommatos, N. (2018). Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 216. https://doi.org/10.1016/j.fuel.2017.12.045

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

## Micro-algae GM for fuel design





P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, "Combustion and emissions characterisation of terpenes as biofuels produced by the micro-algae Synechocystis", Fuel, Volume 111, September 2013, Pages 670-688

## **Combustion phasing**



P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, "Combustion and emissions characterisation of terpenes as biofuels produced by the micro-algae Synechocystis", Fuel, Volume 111, September 2013, Pages 670-688

#### **Ignition delay**



#### NOx emissions



ENGINES AND EMISSIONS GROUP

#### **Total particulate mass**



Alkyl chain length  $\rightarrow$  viscosity  $\rightarrow$  fuel air mixing  $\rightarrow$  fuel pyrolysis

Alkyl chain saturation  $\rightarrow$  soot precursors  $\rightarrow$  soot formation



#### Individual carbon contribution to PM



Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. An investigation into the conversion of specific carbon atoms in oleic acid and methyl oleate to particulate matter in a diesel engine and tube reactor. Fuel. 2015 Aug;153:604–611.

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

#### **Oxygen bond type**



- Oxygenates blended at 10 % mol / mol in *n*-heptane.
- Oxygen double bond reduces C contribution to soot relative to oxygen single bond.

Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. Quantification of the Fraction of Particulate Matter Derived from a Range of 13 C-Labeled Fuels Blended into Heptane, Studied in a Diesel Engine and Tube Reactor. Energy & Fuels. 2016 Sep 15;30(9):7678–7690.

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

## Polycyclic aromatic hydrocarbons



(a) Pugmire, R. J., Yan, S., Ma, Z., Solum, M. S., Jiang, Y. J., Eddings, E. G., et al. (n.d.). Soot Formation Process. Department of Chemical & Fuels Engineering, Department of Chemistry, University of Utah, <u>http://acerc.byu.edu/News/Conference/2003/Presentations/Pugmire.pdf</u> (retrieved 2-04-2015), (b) Health effect of PAHs (http://www.cleanairegypt.org/air-pollution-and-aerosols/: retrieved 20-11-2015)

#### **Fuel effects on PAH**



- Increased temperature reduces PAH (pyrolysis furnace)
- Increasing carbon chain length decreases carcinogenicity

Dandajeh, H. A., Ladommatos, N., Hellier, P., & Eveleigh, A. (2018). Influence of carbon number of C1–C7 hydrocarbons on PAH formation. Fuel, 228, 140–151. https://doi.org/10.1016/j.fuel.2018.04.133

#### Engine exhaust PAH



- *n*-heptane (H), toluene (T) and methyl decanoate (MD) blends
- Total PAH decreases with increasing toluene

Increasing toluene  $\rightarrow$  Increasing ignition delay, premixed and temperatures

23



#### **Total PM or PM toxicity?**



FUTURE FUELS, ENGINES AND EMISSIONS GROUP

## **Conclusions**

- Renewable fuels provide opportunity for molecular design.
- Degree of biomass processing and resultant molecular structure corresponds to SI and CI ignition quality.
- NOx is primarily influenced by molecular structure via ignition delay and combustion phasing.
- Oxygen bond type impacts significantly on:
  - Ignition delay (e.g. GM algae fuels)
  - Individual carbon atom PM (<sup>13</sup>C labelling)
- Total exhaust PAH shows strong temperature dependence.
- PAH per mass of PM shows fuel structure influence.



## Thank you

#### **Questions?**

Acknowledgements:

EP/M009424/1 and EP/M007960/1

**BP Global Fuels** 

#### Contact:- Dr Paul Hellier, Lecturer in Engines and Fuels

#### Department of Mechanical Engineering, University College London

#### p.hellier@ucl.ac.uk

#### <u>References</u>

Hellier, P., Ladommatos, N., Allan, R., Payne, M., & Rogerson, J. (2011). The Impact of Saturated and Unsaturated Fuel Molecules on Diesel Combustion and Exhaust Emissions. SAE International Journal of Fuels and Lubricants, 5(1), 106–122. <u>https://doi.org/10.4271/2011-01-1922</u>

Talibi, M., Hellier, P., & Ladommatos, N. (2017). Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine. SAE Technical Papers, 2017–Octob, 2017-01-2325. <u>https://doi.org/10.4271/2017-01-2325</u>

Talibi, M., Hellier, P., & Ladommatos, N. (2018). Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 216. https://doi.org/10.1016/j.fuel.2017.12.045

P. Hellier, L. Al-Haj, M. Talib, S. Purton and N. Ladommatos, "Combustion and emissions characterisation of terpenes as biofuels produced by the micro-algae Synechocystis", Fuel, Volume 111, September 2013, Pages 670-688

Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. An investigation into the conversion of specific carbon atoms in oleic acid and methyl oleate to particulate matter in a diesel engine and tube reactor. Fuel. 2015 Aug;153:604–611.

Eveleigh A, Ladommatos N, Hellier P, Jourdan A-L. Quantification of the Fraction of Particulate Matter Derived from a Range of 13 C-Labeled Fuels Blended into Heptane, Studied in a Diesel Engine and Tube Reactor. Energy & Fuels. 2016 Sep 15;30(9):7678–7690.

Dandajeh, H. A., Ladommatos, N., Hellier, P., & Eveleigh, A. (2018). Influence of carbon number of C 1 – C 7 hydrocarbons on PAH formation. Fuel, 228, 140–151. https://doi.org/10.1016/j.fuel.2018.04.133

#### Food waste to fuels

- e.g. Spent coffee grounds contain ~ 15 % lipids
- Recovery process impacts on crude composition.



Efthymiopoulos, I., Hellier, P., Ladommatos, N., Russo-Profili, A., Eveleigh, A., Aliev, A., ... Mills-Lamptey, B. (2018). Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Industrial Crops and Products, 119, 49–56.

## **Coffee and Dates (in an engine)**



 Coffee and date pit methyl esters – conventional alternatives, but sustainable feedstocks?

FUTURE FUELS, ENGINES AND EMISSIONS GROUP

Heat release rate (J/degree)



## **PAH formation**



- In-cylinder sampling during diesel combustion and quantification of individual PAH
- Evidence of PAH formation, consumption and oxidation rates varying with species

