

Biorefining of waste for energy, fuel and chemicals

Dr Anh N. Phan

School of Engineering, Newcastle University

Email: anh.phan@ncl.ac.uk

Northumbria, 19th November 2018

School of Engineering

5 academic disciplines

500 staff, 3200 students (21% female students)

Integrated Engineering

Bio and Environmental

Infrastructure

Materials and Manufacturing

Dr Phan's Research Group

- > 10 PhD students
- ➤ 4-6 MEng research students+ MSc/year
- ➤ 2 Research Associate

➤ 1 Anh Phan

Process intensification/ reactor engineering

Renewable energy, fuels, chemicals and materials

Biorefining +
Biofuel
processing

Cold plasma technology

What is plasma?

- ➤In **physics** and **chemistry**, **plasma** is a **gas**, in which a certain proportion of its particles are **ionized**. The presence of a number of charge carriers makes the plasma **electrically conductive** so that it responds strongly to **electromagnetic fields**.
- > The fourth state of matter

Plasma

Not being used in chemical processes due to complex cooling process and energy intensive

Thermal plasma

- ☐ Thermal plasmas are hot (10,000 to 20,000K)
- $\Box T_{e} = T_{N} = T_{ion} = 10,000-20,000K$
- ☐ Ionization: electron collisions with preliminary excited hot atoms and molecules
- **■** Not chemically selective.

- **❖** Catalyst preparation/regeneration/activation
- Catalytic chemical processes
- Thermodynamically unfavourable reactions etc.

Cold (non-thermal) plasma

- ☐ They operate close to ambient temperature
- \Box T_e (10,000 to 100,000K)>>T_N=T_{ion} (ambient temperature)
- ☐ Ionization: electron collisions with "cold" excited atoms and molecules
- ☐ Chemically selective

Cold plasma for CO₂ dissociation

Cold plasma for liquid waste treatment

Waste glycerol

Waste lubricant

Waste cooking oil

- Hydrogen
- Hydrocarbon
- Alcohol

Cold plasma

Atmospheric

temperature

Acetol (Hydroxyacetone)

Waste glycerol conversion

	Yield (%wt)					
	H ₂	CO ₂	СО	CH ₄	C ₂₋₄	Acetol
Conventional method @300-350°C)	0.17	5.9	3.78	9.36	2.87	11.25
Cold plasma (no catalyst) ¹	1.01	3.46	8.56	3.25	9.26	34.92
Cold plasma (no catalyst)	2.72	10.79	9.90	4.44	10.34	58.20
Cold plasma (no catalyst)*	0	0	17.32	2.75	18.13	12.16
Cold plasma (packing materials)	2.45	13.80	12.21	0.87	31.37	0.22
Cold plasma & catalyst (Ni/Al ₂ O ₃)	7.02	44.98	34.81	3.46	8.85	0.19

^{*} Change carrier gas from N₂ to He

Compared to theoretical yield: 8.7%wt

¹ Low plasma power

Waste-to-energy, fuel and chemicals

Sustainability and plastics

Plastic waste pyrolysis

The Independent:

https://ind.pn/2P6xfjJ

Government Europa:

https://www.governmenteuropa.eu/cold-plasma-pyrolysis/90589/

- Kinetic studies
- Study the synergetic effect of plasma and catalytic pyrolysis
- Targets: Chemical recovery and hydrogen production

Pyrolysis of biomass waste

Upgrading pyrolysis liquid-bio-oil

- Catalytic Cracking:
 - Oxygen removed in the forms of CO and CO₂
 - Conditions: T=380°C, atmospheric pressure
 - Catalysts: Zeolite i.e. HZSM-5
 - Challenges: coke formation; ~ 30% oxygen removed
- Hydro-deoxygenation:
 - Oxygen removed in the forms of H₂O, CO₂ and/or CO
 - Conditions: ~500L H₂/1L of bio-oil; T=350°C, pressure >100 bar
 - Catalysts: transition metals [palsolvin, prathrum etc.),
 hydrodesulphonation catalysts (Co-MoS₂/Al₂O₃), zero valent metals (Fe, Zn, Al and Mg)
 - <u>Challenges</u>: rapid catalyst deactivation; large amount of hydrogen required
- Esterification:
 - Oxygen compounds converted into ester forms
 - Conditions: T>100°C; atmospheric pressure
 - Catalyst: homogeneous or solid form
 - <u>Challenges</u>: deactivation of solid catalysts; small percentage of oxygen removed

Biomass gasification

Hydrogen: a versatile and clean energy carrier

■ Production

□ Applications:

- > Transportation
- Industry: refineries, chemical etc.
- Energy storage

Char derived from pyrolysis step [22-25%wt]

Temperature (°C)	Feedstock	600	700	800	900	
Proximate analy	vsis (%wt, dry ba	asis)				
Volatile matter	84.12	10.09	7.17	4.62	3.64	
Ash content	0.51	2.44	2.60	2.72	2.76	
Fixed carbon	15.37	87.47	90.23	92.66	93.60	
Ultimate analysi	Ultimate analysis (%wt, dry basis)					
C	41.80	85.81	87.04	87.26	87.57	
H	6.39	2.36	1.90	1.71	1.50	
0	51.50	11.44	10.61	10.52	10.32	
N	0.32	0.39	0.45	0.51	0.61	
HHV (MJ/kg)	17.69	32.48	33.00	33.46	33.64	
Surface area	-	38	78	82	98	
(m^2/g)						

Condensable fraction in volatiles derived from pyrolysis step [48-52%wt]

Temperature (°C)	600	700	800	900	Heavy fuel oil (Zhang et al., 2013)
C (%wt)	44.65	43.67	44.54	44.71	85.10
H (%wt)	7.53	7.61	7.65	7.41	10.90
O (%wt)	47.82	51.28	47.81	47.88	1.00
Water content (%wt)	43.85	44.11	44.58	43.68	0.10
рН	2.28	2.31	2.43	2.38	-
HHV (MJ/kg)	17.34	16.50	17.48	17.18	41.83

Non-condensable fraction in volatiles derived from pyrolysis step [25-30%wt]

Gas composition	Pyrolysis temperature (°C)				
(%mol)	600	700	800	900	
H ₂	4.54 ± 0.13	7.31 ± 0.28	9.27 ± 0.19	10.26 ± 0.26	
СО	38.50 ± 0.16	42.71 ± 0.05	45.39 ± 0.12	47.58 ± 0.17	
CO ₂	32.81 ± 0.11	27.48 ± 0.18	23.11 ± 0.14	20.08 ± 0.04	
CH ₄	14.62 ± 0.32	16.28 ± 0.10	16.73 ± 0.06	18.45 ± 0.20	
C ₂ -C ₅	10.53 ± 0.35	6.22 ± 0.22	5.50 ± 0.17	3.63 ± 0.18	
H ₂ /CO	0.12	0.17	0.20	0.22	

Effect of particle size

Particle size (cm³)	0.5	1	2		
Char properties					
С	87.88	87.57	87.35		
Н	1.42	1.50	1.65		
0	10.09	10.32	10.36		
N	0.61	0.61	0.64		
HHV (MJ/kg)	34.00 ± 0.37	33.64 ± 0.36	33.31 ± 0.52		
Surface area (m²/g)	124	98	82		
Condensable fraction in volatiles					
С	46.43	44.71	41.48		
Н	7.37	7.41	7.05		
0	46.20	47.88	51.47		
Water content (%wt)	43.59 ± 0.35	43.68 ± 0.81	46.17 ± 0.41		
HHV (MJ/kg)	18.00 ± 0.43	17.18 ± 0.21	14.92 ± 0.68		

Effect of particle size

Gas composition	Particle size (cm³ cube)			
(%mol)	0.5	1	2	
H ₂	11.37 ± 0.21	10.26 ± 0.26	8.18 ± 0.23	
СО	48.43 ± 0.32	47.58 ± 0.17	47.09 ± 0.28	
CO ₂	18.99 ± 0.13	20.08 ± 0.04	23.47 ± 0.17	
CH ₄	18.43 ± 0.25	18.45 ± 0.20	16.40 ± 0.22	
C ₂ -C ₅	2.78 ± 0.09	3.63 ± 0.18	4.86 ± 0.12	
H ₂ /CO	0.23	0.22	0.17	

Thermal decomposition

	Temperature only	Temperature & steam
CO ₂ (%mol)	1.20 ± 0.18	12.21 ± 0.25
H ₂ (%mol)	56.04 ± 0.39	60.98 ± 0.43 ►
CH ₄ (%mol)	0.95 ± 0.11	0.35 ± 0.14
CO (%mol)	41.81 ± 0.18	26.46 ± 0.46
Solid residue (%wt)	12.33 ± 0.3	0.20 ± 0.17
Tar yield (%wt)	4.21 ± 0.34	2.85 ± 0.70
Gas yield (%wt)	83.46 ± 0.24	96.75 ± 0.35
Water (g)	5.42 ± 0.37	11.11 ± 0.15

Theory: 68%

Carbon content: 0.03%wt

Next step: Biomass gasification

Fischer-Trospch (FT) synthesis at atmospheric conditions

Opportunities for collaborations

Main research areas/what I can offer:

- Thermochemical processes: pyrolysis and gasification of waste for energy, fuel and chemicals
- Cold plasma technologies for bio-refining and chemical processes
- Process intensification/reactor engineering/flow reactors for green chemistry and catalyst screening etc.
- Kinetic modelling
- **❖** Biofuel/biodiesel processing
- **CO**₂ utilisation

Acknowledgments

□ Funders

www.ibd-project.eu

H2020 - SPIRE-08-2015 Grant agreement no: 680565

- ☐ Process Intensification Group (PIG)
- □ PhD students

Thank you for your attention

Dr Anh Phan

Process Intensification Group, Materials and Manufacturing

School of Engineering, Newcastle University

Telephone: 0191 208 5212

Email: anh.phan@ncl.ac.uk

Website: http://www.ncl.ac.uk/ceam/staff/profile/anh.phan