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MagnetoHydroDynamics (MHD)

1. The MHD equations

2. Magnetic Reynolds number and ideal MHD

3. Some conservation laws

4. Static plasmas - magnetostatic equilibria and force-free 
fields

5. Flowing plasmas – the solar wind
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The solar corona

• The corona is the hot (T ≈
106 - 107 K)  tenuous outer 
atmosphere of the Sun 

•Highly dynamic and structured
•Streaming into space as the 
solar wind

Druckmuller 2011

Solar Dynamic 
Observatory  
(SDO)



All structure and 
activity in solar 
atmosphere is 
controlled by 
magnetic field

Magnetic fields in the solar corona
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Solar wind interaction with Earth

Not to scale!
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The bigger picture – the Heliosphere



Plasma in  the universe

• Plasma  - a quasi-
neutral gas of 
charged particles 
exhibiting 
collective 
behaviour

• > 99% of baryonic 
matter in universe 
is in plasma state

• Plasmas create 
magnetic fields 
and interact with 
magnetic fields
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1. The magnetohydrodynamic
(MHD) equations
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The MHD model and its applicability

• One approach to modelling plasmas is kinetic theory – this 
models the distribution functions fs(r,v,t) for each species (s = 
“ions” or “electrons”)

See Tsiklauri lecture

• From kinetic theory we may take moments (integrate over 
velocity space) and derive multi-fluid models (each species 
treated as a separate fluid) or single fluid models 

• MagnetoHydroDynamics (MHD) treats the plasma as single 
electrically-conducting fluid which interacts with magnetic 
fields 

• Does not consider separate behaviour of ions/electrons
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Philosophy and validity of MHD
• Use equations of fluid dynamics and (pre) Maxwell’s 

equations

• Plasma state specified by mass density ρ, temperature T, 
velocity v and magnetic field B at each point in space (r) and 
time t

• Mass density ρ = nm  ≈ nmi ; single temperature
– For fully-ionised plasma; ignoring electron mass; charge neutrality ne = 

ni ≡ n

– Local thermodynamic equilibrium; equal ion and electron temperatures

Collisional plasmas/large-scale phenomena (rL, λD , λmfp << L) 
Low frequency phenomena (1/τ << ωp , ωce )
Sub-relativistic (u, L/τ << c )  - neglect displacement current
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When is MHD useful?

• Widely used to model plasmas in  
magnetically-confined laboratory 
experiments, Sun, space, astrophysics

• Models interactions of plasma with 
magnetic fields, often in complex 
configurations – especially large-scale 
phenomena

• Also describes liquid metals

– e.g. Earth’s core, industrial processes

• Often gives useful information even 
when conditions for validity not strictly 
satisfied e.g. tokamaks, Earth’s 
magnetosphere

3 m liquid metal dynamo 
experiment, U Maryland
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MHD simulations of convection in solar interior

STFC Summer School -
Magnetohydrodynamics



Data-driven 
magnetohydrodynamics

simulation (Predictive 
Science)

August 18 2017

Eclipse image

August 21 2017



MHD simulation of solar wind

STFC Summer School -
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ENLIL 
simulation

http://www.space
weather.eu/ccmc-
enlil-help



Global MHD 
simulation of 
Earth’s 
magnetosphere

Solar Terrestrial 
Environment 
Laboratory, Nagoya 
University
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Derivation of MHD equations:
Induction equation 

Start from Ampere’s Law 

Faraday’s Law 

and Ohm’s Law (simple form)

(neglecting electron inertia, Hall term etc)

0 B j

t


  



B
E

   j E v B

Electric field in 
reference frame of 
moving plasma

Conductivity

{

Neglecting displacement current – valid in non-relativistic limit L/T << c
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Eliminating j and E, we can  derive the Induction Equation:

• Determines evolution of magnetic field for given velocity field 
• Note that conductivity σ is caused by collisions between ions 

and electrons and so is temperature-dependent. We use

(but in derivation above we assume σ is constant)

-4 3 2 -1 -1 -1 = 7 X 10    mho  m  (or Ohm  m )  - where  in KT T

   2

0,            where =1
t

   


   


B
v B B

Magnetic diffusivity
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Momentum equation

• The equation of motion or momentum equation  is

• The RHS is total force (per unit volume): gradient of pressure 
(p), Lorentz force, gravity and viscosity 
– Viscosity is anisotropic in magnetised plasma – but often negligible

– Gravity negligible (usually) in laboratory plasmas

• Using Ampere’s law, note

• The LHS is the mass (per unit volume) multiplied by the 
acceleration seen by a moving fluid element – this is given by a 
convective derivative 

visc

d
p

dt
      

v
j B g F

  01    j B B B

( . )
d

dt t




  

v v
v v
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Continuity equation and equation of state

• We have an equation of mass conservation  or continuity (rate 
of change of mass in a small volume is equal to mass flux into 
volume – no sources/sinks of plasma):

• For incompressible flows this reduces to 

• The equation of state is usually taken as the  Perfect Gas Law

where m is the mean particle mass. 
– Note that for a fully-ionised hydrogen plasma (protons and electrons) 

.( ) 0
t





 v

0 v

 1 2 pm m

  ( / )Bp k m T
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Energy equation

• Finally we need an energy equation. Fairly  generally this can 
be written 

• LHS is rate of change of internal energy (per unit volume)

• RHS is sources/sinks of energy: conduction (where 
conductivity κ is related to collision-frequency and is also non-
isotropic – different across field/along field); optically-thin 
radiation; Ohmic heating; other sources of heat (e.g. Viscous 
damping).

• Often we can use the simpler adiabatic equation  

0
d p

dt 

 
 

 

2
2( . )( ) .( . ) ( )
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p j
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



 
 

   
       


v
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No magnetic monopoles

• In addition, Maxwell’s equations give us a constraint on the 
magnetic field

• Magnetic monopoles do not exist:

0 B
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The MHD equations

 
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The MHD equations

• 9 highly-nonlinear, coupled equations in 9 unknowns 
(components of B, v;  p, ρ, T)

• Secondary variables – notably current and electric field j and E 
– can be derived as required (from Ohm’s Law, Ampere’s Law)

• More general versions are available e.g.
– Multi-fluid   (Hall-MHD  - treats two-fluid effects; add neutral fluid, etc)

– Relativistic MHD  (used in high-energy astrophysics)

– Radiative MHD (couple with radiative transfer)

• Plasma flows  →  magnetic field (induction equation)
• Magnetic field  → plasma flows (momentum equation)
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The momentum equation and Lorentz force
• Using the vector identity

and setting A = B (using also B.B = B2 ) we obtain an expression 
for the Lorentz force:

= magnetic pressure force + magnetic tension force

• Magnetic pressure is  B2/2μ0

                    A B B A A B A B B A

   
2

0 0

1

2

B

 

 
        

 
j B B B B B

Total pressure = magnetic pressure + thermal pressure
= B2/2μ0 + p
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Magnetic tension

   
2

0 0

1
.        (where )

B
B

 
   B B b b b B

•Magnetic tension force acts towards centre of curvature of 
field lines
•Magnetic field lines are like “stretched strings”

b

 .l b b b

Length

  l

Radius 

of 

curvature

RC

 
2

ˆ. c

c

B

R
  B B R

ˆ
CR

Similar to “centrifugal 
acceleration” associated with 
curved velocity streamlines 
𝒗. 𝜵 𝒗
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Plasma beta

• The relative important  of the pressure force and magnetic 
force is determined by the “plasma beta”

• In many instances (e.g. solar corona...)  β is small – magnetic 
forces dominate

0

2 2

0

2Thermal pressure

Magnetic pressure 2

pp

B B





   (1.6)
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2. MAGNETIC REYNOLDS NUMBER 
AND IDEAL MHD
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More about the induction equation

• What is  the relative importance of plasma motions and Ohmic
resistivity in induction equation?

• Consider ratio of terms (1) and (2) on RHS:

• This is the magnetic Reynolds number  (Re) - a dimensionless 
number similar to Reynolds number in fluid dynamics

  2

t



   



B
v B B

(1) (2)

2

(1)

(2)

vB L Lv

B L 
 

0Re
Lv

Lv 


 

where L and v are 
typical length-
scale and velocity
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Magnetic Reynolds number

• Magnetic Reynolds number tells us the relative importance of 
resistivity and plasma flows in determining evolution of B

Re >> 1 : flows dominate, resistivity negligible

Re << 1:   highly-resistive

Fusion and astrophysical plasmas are very good conductors, also L 
very large in astrophysical plasmas

→ Re usually very large

• Consider two limits separately
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The limit Re << 1 (high resistivity) 

• Induction equation becomes diffusion equation

• Field gradients/currents diffuse away due to Ohmic resistivity 
on a diffusion time-scale

• Usually very slow process e.g. in solar corona, taking                  
L = 1000 km, T = 1 million K 

2

d

L
t




B
B 2





t

years 000,30dt

2L

B

t

B

d


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Ideal MHD : Re >>  1 (high conductivity)
• The limit Re >> 1 – (high conductivity) is 

known as Ideal MHD

• Relevant for tokamaks and astrophysics
– Note this is a singular limit in some senses (see 

magnetic reconnection , later)

• The induction equation becomes

• Consider rate of change of magnetic flux 
through a fluid surface S, bounded by 
closed curve C

 
t


  



B
v B

.
S

d  B S

Flux Φ may change due to –
•Field B changing in time
•Surface S moving/distorting  as fluid moves
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 . .
S C

d
d d

dt t

 
  

 
B

S B v l

(1) Due to explicit 
local  time 
variation of B

(2) Due to motion 
of surface S

Moving fluid sweeps out area 
vdt X dl in time dt

C(t) C(t+dt)

Substitute from induction 
equation (1)  and re-arrange 
vector triple product (2)  →

Use Stokes’ Theorem on term  (2) → 

    lvBSBv dd
dt

d

CS

..  


    0.. 


 SvBSBv dd
dt

d

SS
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Alfven’s Theorem
• In a perfectly-conducting plasma, the magnetic flux through 

any fluid surface is conserved.

Example A star of initial radius 106 km and magnetic field strength 0.01 T 
collapses to form a neutron star of radius 10 km. Estimate the magnetic 
field in the neutron star.

 

 

2 2

1 1 2 2

2

2 1 1 2

2
5 8

 constant 

Hence final magnetic field 

0.01 10 10  T

BA B R B R

B B R R

    



  

Very strong field! A pulsar.

B

R
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Frozen-in fields

• In ideal MHD, magnetic fieldlines move with the fluid:

Magnetic field is frozen to the plasma

• The topology/connectivity of the magnetic field is invariant

t = 0
t > 0

B
v
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Example of frozen-in fields –
the Solar Wind magnetic field

• The solar wind is a supersonic flow of plasma away from the Sun  -
typical speed 350 km s-1 (see Section 5)

• The Sun  also rotates every 27 days or so, giving an angular velocity 
of about 2.7 X 10-6 rad s-1

• The magnetic field is frozen to the spinning outflowing plasma 
which forms spiral pattern (like garden sprinkler!)

r swB B r v 

At 1 au this gives a spiral 
angle ψ (where tan ψ = 
Bθ/Br   about 45o
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Example of frozen-in fields -dynamos

• Magnetic field in Sun, stars, galaxies, planetary interiors usually 
generated by a dynamo – plasma motions create magnetic 
field

•Differential 
rotation generates 
toroidal field (EW) 
from poloidal field 
(NS)
•Also need 
mechanism to 
generate poloidal
field from toroidal
e.g. Associated 
with turbulence

See e.g. P Charbonneau, Living 
review of Solar Physics (2010)
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Geomagnetic dynamo

STFC Summer School – Magnetohydrodynamics



Magnetic reconnection
• Even in very highly-conducting plasmas, the frozen-in condition 

can be violated locally 

• Magnetic field lines can break and reconnect  at current sheets 

• Ideal outer region
• Inner resistive region - a 

thin layer

Important in solar flares,  
magnetospheres,
tokamaks etc
Restructures magnetic field 
and efficiently dissipates 
magnetic energy

See Hornig lecture
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Reconnection in action-Solar flares

• Solar flares are dramatic events releasing  up to 1025 J of stored 
magnetic energy over  minutes/hours

• Flares generate plasma heating and fast particle beams - signatures 
across the em spectrum  from gamma rays to radio  - see Kontar and 

Matthews  lectures

X class 
flare
Dec
2014
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3. CONSERVATION LAWS

Energy 

Conservative form of MHD equations

Helicity
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Energy

• Consider flows of energy in ideal MHD

     

   

0

2 2

0

2

0

1
. . . .

1 1 1
. . .

2 2

1
. 0

2

p
t

v v p
t

B
t




 


 

 
           

    
                 

    
    

    0

v
v v v v v B B

v v v B B

E B

Dot product momentum equation with v

Using vector identities and mass conservation

Rate of change of
kinetic energy

Flux of
kinetic energy

Work done by pressure 
gradient and Lorentz force

Magnetic energy balance from 
Ampere’s and Faraday’s Law – no 
Ohmic dissipation

Rate of change of
magnetic energy

Poynting flux 
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2 2 2

0

1 1 1
. 0

2 2 1 2 1

p
v B v p

t


 

   

    
         

     0

E B
v v

Combining above equations with adiabatic energy equation 
(1.5) – and a little algebra - gives ideal energy conservation law

Rate of change of total  energy
Kinetic  + magnetic +internal

Flux of
K.E.

Poynting
flux 

Enthalpy
flux 

Integrating over volume and assuming surface integral 
(integrated energy flux) vanishes at infinity (boundary of region 
of interest), we obtain conservation law:

2 2

0

constant

1 1
,      W ,

2 2 1
V V

K W

p
K v dV B dV

 

 

 
   

 
 

Kinetic energy + potential energy = constant

Kinetic energy Potential  energy

(3.1)

(3.2)
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Conservative form of MHD equations

• The ideal MHD equations may be written in conservative form

• Useful for simulations, also  shock theory (see Gordovskyy
lecture)

Mass (1.3):

Momentum – rearranging (1.4):

Energy (3.1):

STFC Summer School -
Magnetohydrodynamics
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Magnetic helicity

• Magnetic helicity is a useful global quantity which quantifies 
field topology

• It can be shown that for flux tubes with magnetic fluxes Φ1,

Φ2, interlinking N times

.     where 
V

K dV  A B A B (3.3)
A is vector 
potential 

L Woltjer, Proc Nat Acad Sci (1958); K 
Moffatt “Magnetic field generation 
in electrically conducting fluids” 
(1978)

1 2K N   

0K
1 2K 
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A m = 5 distorted flux 
tube with helicity 5Φ2  

due to twist 3.54 and 
writhe 1.56 from              
M Berger (Plas Phys Cont 
Fus 1999)

Equivalently a single flux rope with twist T (no. of poloidal
turns = 1/q)  and “writhe” (axis distortion) Wr has helicity

2( )rK T W  

Twist and writhe from E Blackman , 
Space Sci Rev (2014)
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Helicity conservation
• Using the induction equation, it can be shown that 

helicity is conserved in ideal MHD for every closed 
volume bounded by a magnetic flux surface

• Since magnetic topology is preserved in ideal 
MHD! (See Section 2)

• Taylor hypothesised that in a turbulent plasma, 
the global helicity is conserved whilst individual 
flux tube helicities are not

– Magnetic helicity is approximately conserved in 
the presence of turbulence/magnetic 
reconnection whilst energy is dissipated

– J B Taylor, Phys Rev Lett 1974

0
dK

dt


Helicity conservation 
during reconnection
From Pfister and 
Gekelman 1991
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Relaxation theory
• A turbulent plasma will relax towards a state of minimum 

magnetic energy with conserved helicity
• It can be shown that this relaxed or minimum energy state 

is a constant-α force-free field (see Section 4)

• In cylindrical coordinates*, the solution to this is given in 
terms of Bessel functions as

*See equation (4.7)

(3.4)

Bθ

Bz

r/a

constant is    where, BB 

 

 rJBB

rJBBz





 10

00




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4. MAGNETOSTATIC EQUILIBRIUM 
AND FORCE-FREE FIELDS
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Equilibrium

• If the plasma flows are weak and the fields are slowly-evolving, 
we can set LHS of momentum equation to zero – we have an 
equilibrium in which all forces balance

• This can be done if any flows  v are weak compared with Alfven 
speed and sound speed; and time-scales of variation T are 
slow compared with Alfven time and sound time

p    j B g 0

Alfven speed is the propagation speed of magnetic waves carrying 
information about changes in B
Alfven waves propagate along magnetic field lines, restoring force is 
magnetic tension
See Nakariakov lecture

, ,      ,A s A sv v c T L v L c 

(4.1)
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• If we can also neglect gravity we have a magnetostatic field

Gravity can be neglected if length-scale L is much less than 
gravitational scale-height Λ = kBT/mg

• If the plasma beta is also small  

then Lorentz force is dominant and we have a force-free field

 
0

1
       where p


   j B j B

 j B 0

(4.2)

(4.3)

1 
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Magnetostatic fields in a cylinder

In a cylindrical field where all quantities depend only on r, the 
magnetostatic equation can be written as an ODE

Total pressure gradient + magnetic tension (circular Bθ lines) = 0

• A  “flux rope”  e.g. sunspot, coronal loop (ignoring curvature), 
linear laboratory device (e.g. Z pinch), flux rope in planetary 
atmosphere or solar wind.....

2 2 2

0 0

0
2

zB B Bd
p

dr r

 

 

 
   

 
(4.4)
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Theta-pinch

• Consider a system with only axial field Bz (straight field lines)  
and thermal pressure (Bθ= 0) – then total pressure  is constant

• In a laboratory, this is a device in which magnetic field is 
generated by an external solenoid (current in θ direction) – a 
θ-pinch

• In the Sun, a good example is a sunspot

• Note that where p is large, B is weak – plasma diamagnetism

2

0

0 constant
2

tot
tot

dp B
p p

dr 
    
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Z pinch (linear pinch) and Theta pinch

Current in z 
direction, field in θ
direction

Current in θ
direction, field in z 
direction
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Sunspots – roughly cylindrical bundle of 
magnetic field – similar to theta pinch

Lightning – inward 
collapse due to 
current  - similar to Z 
pinch
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Z-pinch (cylindrical pinch)

• Consider linear magnetic confinement device with plasma current  
in z-direction generating azimuthal magnetic field Bθ

• Plasma is confined by inwards force or pinch - due to tension of 
circular field lines Bθ – equivalently, axial current I provides 
confinement (mutual attraction of current filaments)

Example Z pinch of radius a with uniform current density  j0,

   

   

0 0 0 0

0

2 2

0 00

2 2

0
0

2 2 2

0
2

0
4

r

r

rB r j dr B j r

B B
p r p dr

j r
p r p

 

 

   

 



  

  

  





Since pressure at edge vanishes, p(a) = 0. Hence central pressure  is 

Ampere’s Law

Integrating (3.6) 

Substituting for Bθ and doing integral

 
2

0

2 2
0

4

I
p

a




 In terms of total plasma current I =πa2j0
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Force-free fields

      j B 0 B B 0

• Consider  equilibrium for very low β plasmas (neglect pressure)

• Currents flow parallel to magnetic field

where α is a scalar - it can easily be shown  α is constant along 
field lines

• If α is spatially-uniform, this is called a constant-α field or linear 
force-free field

• For cylindrically-symmetric fields (3.6) becomes

2 2 2

0
2

zB B Bd

dr r

 
 

  
 

(4.5)

(4.6)

(4.7)

Magnetic pressure
gradient

Magnetic tension

 BrBBB    //  



Force-free fields in a cylinder
(twisted flux ropes)

• Need one additional condition to fully determine fields

• The angle rotated by a field line  Φ in a cylindrical flux tube is 
given by

 
0 0

L L

z z

B LB
r d dz

rB rB

      (4.8)
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Example Constant twist field  - assume helical pitch of all field lines 
is the same

 

   

0

0

2 2 2 2
2 2 20 0

2 2

2
2 2

2 0

2

0 0 0

2 2 2 2 2 2

0 0

Let 

1 1
0

2

1 0

,    
1 1

z

z

z z z

z

z

r LB rB

B rB L

r rd
B B B

dr L r L

rd
B

dr L

B B r L
B B

r L r L







   

 

  
    

 

  
    
   


  

   

Substitute into (4.7) 

Check by working backwards using 
product rule
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r

Bθ

Bz
0 2

L




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Equilibrium fields involving gravity
e.g. Solar prominences

• Often in astrophysical fields gravity can play an important or 
dominant role in the force balance

• Solar prominences are dense cool sheets of plasma suspended 
in the solar atmosphere

• Observed as dark filaments from  above,                                                          
flame-like sheets from the side

• Typical parameters:

• Dense plasma supported against gravity mainly by magnetic 
tension force of curved magnetic field lines

17 3 -410 m ,  7000 K,  B 5-10 10  T,  

length  200,000 km, height 50,000 km,  width 6000 km

n T   

  
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• Simple model of prominence support  - Kippenhahn-Schluter

• Assume constant T (isothermal), constant  horizontal field Bx, By; 
all other quantities depend only on x (coordinate across width)

    0

2

0 0

0 0

1 0, , ,

1
0 const;

2

1
0.

z x y z

z z
z

z z
x x

dB dx B B B

dB Bdp
B p

dx dx

dB dBkT
B g B p

dx mg dx



 


 

   

     

   

j B

22

0

0

0

const=
2 2

2
tanh   where .

z z
x

x
z

BdB B
B

dx

Bx
B B w

w B

   

 
  

 

Combining and solving:

where Λ = kT/mg is gravitational scale height

Horizontal (x) force balance

Vertical (z) force balance;
use gas law
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Vertical – balance between magnetic tension of curved field 
lines (up) and gravity (down)
Horizontal – total pressure constant (plasma pressure peaks 
at centre of prominence where magnetic pressure dips)
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Equilibrium magnetic fields in 2D 

• Consider a magnetostatic field in which all quantities are 
independent of z coordinate

• e.g. Arcade of solar coronal loops

• Express field components in terms of flux function ψ

Exercises for student – check divB = 0 
and ψ = constant along field lines
Also show ψ = Az where A is vector 
potential

   
 

0 0

, ,
ˆ ˆ,   or ,

yx

x y z

BB

x y

x y x y
B B x y B

y x

 



    

 

 
       

 

B

B z z (4.9)
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• First, take scalar product of force balance (4.2) with B

• Pressure is constant along field lines

• Now calculate current (from Ampere’s Law)

STFC Summer School -
Magnetohydrodynamics

 

)(

0

0...





Pp

y

p

xx

p

y

pp






















 BBBBj
Pressure constant along 
field lines

Substituting for Bx , By

Jacobian vanishes so p is a 
function of ψ – called P

zyxBj ˆˆˆ
1

2

2

2

2

0





























yxx

B

y

B

μ

zz 

2



• Substitute into force-balance equation (4.2):

z-component:

x-component:
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 

 



zz

zz

z

BB

yx

B

xy

B

z

p




























0

0Bj

Invariance in z

Substituting for Bx , By

Jacobian vanishes so Bz is 
a function of ψ

 

xd

dP

x
B

d

dB

x

xd

dP

x

p

z
z

x











































2

0

1

Bj

Substituting  Bz = Bz(ψ)



Grad-Shafranov equation

•Finally we obtain the Grad-Shafranov equation (also from y 
component):

•A second-order nonlinear elliptic partial differential equation
•In general, must solve numerically 

•Useful special case – constant-α field - Bz = αψ, P = 0

•Linear, may solve by separation of variables etc

 

 

2

0 ,  

where axial field 

and pressure 

z
z

z z

dB dP
B

d d

B B

p P

 
 





  




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3D equilibria – force-free field in solar corona

From Guo et al, Ap J 2012
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Global coronal magnetic field model
• PFSS

• Potential 
Field 
Source 
Surface

• Simplest 
case of 
force-free 
field j = 0

• Matches to 
radial 
magnetic 
field of 
solar wind 
at source 
surface
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5. Flowing plasma – the solar wind
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Flows – the solar wind

• Some early evidence for existence of a solar wind was given by 
comet tails – these always point away from Sun

• Solar wind then predicted theoretically by Parker (1958) and 
confirmed by direct evidence of moving plasma by space craft 
from 1960s onwards

– First direct in situ measurements of flowing plasma from 
Mariner

– Voyager has measured solar wind velocity directly – to the 
edge of the heliosphere

– Solar Wind velocity routinely measured by spacecraft near 
Earth e.g. ACE, WIND

– ULYSSES measured solar wind out of the ecliptic plane (over 
poles of Sun)
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Observations of 
comet tails 
suggested outflow 
from Sun

ionized tail

dust tail
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The solar wind equation

• Consider  steady-state, spherically-symmetric, isothermal 
corona (temperature T) with radial flow u.  Assume fully-ionised 
hydrogen plasma which is a perfect gas; neglect magnetic force. 

• Momentum equation: 

• Mass conservation equation:

(constant flux of plasma through every spherical surface)

• Perfect gas law:

• Combine (eliminating p and ρ),derive the Solar Wind equation

2r

GM

dr

dp

dr

du
u


 

  04 2 ur
dr

d


T
m

k
p

p


2



(5.1)

(5.2)

(5.3)
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21 2 4
ln ln

2

o

p p

GMkT kT
u u r C

m m r
   

2

2

2 1 4
( ) o

p p

GMkT du kT
u

m u dr m r r
  

• This is a first order Ordinary Differential Equation which can 
easily be integrated to give

where C is a constant of integration (hence family of solutions)

oGM
  

4

p

c

m
r

kT


• The RHS vanishes at the critical radius:

• At critical radius, either du/dr = 0 (u(r) has a turning point) 
or u = cs (flow speed is sonic)

(5.4)



Selection of  solar wind solution

• Solutions in classes 1, 3, 4, 
5 can be ruled out – only 
relevant solution is class 2

• Solar wind solution starts 
with low speed at solar 
surface – becomes 
supersonic beyond rc

Class 5Class 5
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Parker solar wind solution
Dependence of u on r (for different values of temperature T)

Speed u is increasing function of distance r
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Voyager 2 – solar wind overview
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Summary

• Magnetohydrodynamics (MHD)  provides a powerful tool for 
modelling the interaction of a plasma – treated as an 
electrically-conducting fluid – with magnetic fields

• May be used to model
– Solar interior 

– Solar atmosphere

– Global properties of Solar Wind and planetary magnetospheres

– And more (e.g. laboratory plasmas)

• In the following lectures, you will learn about:
– MHD waves and instabilities

– Magnetic reconnection

– And many other topics involving MHD models
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Reading list
• “Magnetohydrodynamics of the Sun” E R Priest

• “Principles of magnetohydrodynamics” H  Goedbloed and S 
Poedts

• “Lectures in magnetohydrodynamics” D D Schnack

• “Ideal magnetohydrodynamics” J P Freidberg
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