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A very short history of magnetic reconnection
• 1946 Giovanelli suggested reconnection as a mechanism for particle 

accleration in solar flares. 

• 1957-58 Sweet and Parker developed the first quantitative model 

• 1961 Dungey investigated the interaction between a dipole 
(magnetosphere) and the surrounding (interplanetary) magnetic field which 
included reconnection. 

• 1964 Petschek proposed another model in order to overcome the slow 
reconnection rate of the Sweet-Parker model 

• 1974 J B Taylor explains the turbulent relaxation of a Reversed Field Pinch 
by a cascade of reconnection processes which preserve only the total 
helicity.

• 1975 Kadomtsev explains the sawtooth crash (m=1,n=1 mode) in a 
tokamak by reconnection 

• 1988 Schindler et al. introduced the concept of generalised magnetic 
reconnection in three dimensions 



Literature:

• several thousands publications which refer to magnetic reconnection 

• Biskamp, D., Magnetic Reconnection in Plasmas, CUP 2000 

• Priest and Forbes, Magnetic Reconnection, CUP 2000 

• Reconnection of Magnetic Fields, Editors: J. Birn and E. R. Priest, 
CUP 2007



A first impression ....

This illustrates a 2D stationary process,  magnetic field of x-type structure,  
plasma flow (yellow arrows) is of x-type as well, jxB forces can drive plasma 

.... which is misleading in many aspects ...

“Magnetic reconnection is a physical 
process in highly conducting plasmas in 
which the magnetic topology is 
rearranged and magnetic energy is 
converted to kinetic energy, thermal 
energy, and particle acceleration. Magnetic 
reconnection occurs on timescales 
intermediate between slow resistive 
diffusion of the magnetic field and fast 
Alfvénic timescales” 
 
(from wikipedia)

https://en.wikipedia.org/wiki/Plasma_(physics)
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Particle_acceleration
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Alfv%C3%A9n_wave


Occurrence of magnetic reconnection: 
• Fusion devices, in particular Tokamaks. Sawtooth oscillations limit 
confinement (see e.g Kadomtsev, 1987).

Reconnection Experiments: Swarthmore Spheromak Experiment (SSX), 
Princeton Magnetic Reconnection Experiment (MRX), High Temperature 
Plasma Center Tokyo (TS-3/4), Versatile Toroidal Facility (VTF) at MIT, ...



• Magnetospheres of planets  



• Solar Flares, Coronal Mass Ejections  
•  Accretion disks around black holes 
•  Magnetars (Soft Gamma Repeaters)

Why is reconnection important?

Process which is capable of releasing 
large amounts of magnetic energy in a 
comparatively short time in a plasma 
with a high magnetic Reynolds number. 

Coronal Mass Ejection observed by SDO 



Reconnection in other systems

•Hydrodynamics: Reconnection of vorticity (“crosslinking ” or “cut and 
connect” of vortex tubes) , e.g. [Kida, S., and M. Takaoka, Vortex 
Reconnection, Annu. Rev. Fluid Mech. 26, 169 (1994)] 
•Superfluids: Reconnection of quantized vortex elements [e.g. Koplik, J. and 
Levine, H., Vortex reconnection in superfluid helium, Phys. Rev. Letters 71, 
1375, (1993)] 



Reconnection in other systems
•Cosmic Strings: Reconnection of topological defects [e.g. Shellard, E.P.S., 
Cosmic String interactions, Nucl. Phys. B 282, 624, (1987)] 

•Liquid Crystals: Reconnection of topological defects [e.g. Chuang, I., 
Durrer, R., Turok, N., and Yurke, B., Cosmology in the laboratory: Defect 
Dynamics in Liquid Crystals, Science 251, 1336, (1991)]

•Knot theory: Surgery of framed knots [e.g. Kauffman, L.H. (1991)Knots and 
Physics, World Scientific, London] 

•Enzymology: Reconnection (also “recombination”) of strands of the DNA 
[e.g. Sumners D., Untangling DNA, Math. Intell. 12, 71–80 (1990)]



What have these systems in common? 
• A primarily ideal, i.e. topology conserving dynamics. 

• A (spontaneous) local non-ideal process, which changes the topology. 

Characteristics of magnetic reconnection:
a) it generates an electric field which accelerates particles parallel to B 

b) it dissipates magnetic energy (direct heating) 

c) it accelerates plasma, i.e. converts magnetic energy into kinetic energy 

d) it changes the magnetic topology (further relaxation can release more energy)  
 
a)-c) are not properties of magnetic reconnection alone, but occur also in other 
plasma processes. We therefore concentrate here on aspect d).  

Courtesy of M Hesse



A very crude definition of magnetic reconnection: 

Magnetic reconnection is a process by which a magnetic field in an almost ideal 
plasma changes its topology. 

almost ideal plasma:  a plasma which satisfies E + w x B = 0 almost everywhere 
in the domain under consideration

topology of magnetic flux: The connectivity of magnetic field lines (flux tubes) 
within the domain or between boundaries of the domain



Ideal evolution: 5. Conditions for magnetic reconnection to occur

E + v ⇥B = 0 ⇤ ⇤

⇤t
B�⇧⇥ v ⇥B = 0

⇤ Conservation of magnetic flux and field line topology: No reconnection.

Reconnection can only occur if the plasma is non-ideal.

E + v ⇥B = N (e.g. N = ⇥j)
⇤

⇤t
B�⇧⇥ v ⇥B = ⇧⇥N

if N = �v ⇥B +⇧�

⇤ ⇤

⇤t
B�⇧⇥w ⇥B = 0 for w = v � �v

a) N = �v ⇥B +⇧� and �v smooth: No reconnection but slippage.

b) N = �v ⇥B +⇧� and �v singular: Reconnection (2D).

c) N ⌅= �v ⇥B +⇧� Reconnection (3D).

3. Topological Conservation Laws

3.1. Flux conservation

⇤tB�⇧⇤ (v ⇤B) = 0

⌅
�

C2(t)
B · da = const. for a comoving surface C2,

⌅ Conservation of flux

⌅ Conservation of field lines

⌅ Conservation of null points

⌅ Conservation of knots and linkages of field lines

Vice versa: If B(x, t) conserves the magnetic flux then there exists a transport velocity w such that
⇤tB�⇧⇤ (w ⇤B) = 0. Note that w is not unique.

 

Alfvén’s Theorem (1942):  The flux through any comoving surface is conserved.  
 
Mathematically this is an application of the Lie-derivative theorem: The 
magnetic field is transported (or Lie-dragged, Lie-transported, advected) by the 
flow v. 
⇒  Topology conservation   
 
⇒ Conservation of flux,  
⇒ Conservation of field lines  
⇒ Conservation of null points 

⇒ Conservation of knots  
and linkages of field lines 



Role of ideal evolution in reconnection: 
• Storage of magnetic energy
• Generates small scales (typically current sheets)

1.7. Kinematic MHD Equations

For certain applications the plasma flow v is known or assumed to be of a certain form (e.g. dynamo
theory). In this case we only have to find the magnetic field from the induction equation.

⌥B
⌥t
��⇤ (v ⇤B) = ��⇤ 1

⇤µ
(�⇤B). (21)

For a given v(x, t) this equation determines the magnetic field B(x, t) provided the field is given at an
initial time B(x, t0). Note that if the initial field is divergence-free then the induction equation ensures
that the magnetic field is divergence-free for all later times, hence (20) is nothing more than an initial
condition for solving the induction equation. A solution of (21) is called a “kinematic” solution.
Assuming that the magnetic di�usivity

� =
1

µ⇤
, (22)

is constant (generally depends on T ), (21) can be rewritten using ��⇤ (�⇤B) = �B��(� · B) as

⌅ ⌥B
⌥t
� �⇤ (v ⇤B)⇤ ⇥� ⌅

advection term

= ��B⇤ ⇥� ⌅
di⇥usion term

(23)

Define, Rm, the magnetic Reynolds number, as the ratio of the advection and di⇥usion terms in the
induction equation.

Rm =
|�⇤ (v ⇤B)|

|�⌃2B| =
v0B/l0
�B/l20

=
l0v0

�
, (24)

Rm is an important dimensionless parameter determining the importance of advection w.r.t. di⇥usion
of the magnetic field.
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�
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of the magnetic field.

Rm =10000 Rm =10



Role of ideal evolution in reconnection: 

• Under ideal evolution a non-trivial  topology can store energy  

trivial topology:  
ideal  relaxation can 
reduce the magnetic 
energy to zero.

non-trivial topology:  
(linkage of magnetic flux)  
ideal  relaxation cannot 
reduce the magnetic 
energy to zero.

• Ideal relaxation of a non-trivial magnetic field often leads to current sheets 



Non-ideal evolution: 

• For                                     the topology of the field changes. If this occurs in 
an isolated region only it is called reconnection. If it occurs globally it is called 
diffusion.

5. Conditions for magnetic reconnection to occur

E + v ⇥B = 0 ⇤ ⇤

⇤t
B�⇧⇥ v ⇥B = 0

⇤ Conservation of magnetic flux and field line topology: No reconnection.

Reconnection can only occur if the plasma is non-ideal.

E + v ⇥B = N (e.g. N = ⇥j)
⇤

⇤t
B�⇧⇥ v ⇥B = ⇧⇥N

if N = �v ⇥B +⇧�

⇤ ⇤

⇤t
B�⇧⇥w ⇥B = 0 for w = v � �v

a) N = �v ⇥B +⇧� and �v smooth: No reconnection but slippage.

b) N = �v ⇥B +⇧� and �v singular: Reconnection (2D).

c) N ⌅= �v ⇥B +⇧� Reconnection (3D).

• Reconnection can only occur if the plasma dynamics is non-ideal.
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• For 
 
  the evolution is still ideal w.r.t. the velocity w (flux transport velocity). Flux 
transport velocities are non-unique. The difference v - w is called slippage (of 
plasma w.r.t. the field).   
  E.g Hall MHD:
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Example of slippage

Example where the transport velocity of the magnetic flux w di�ers from the plasma velocity v in a
non-ideal region (gray) while outside the non-ideal region the plasma is ideal (v = w). The blue and
red cross sections are moving with the plasma velocity. The blue cross section always remains in the
ideal domain while the red cross section crosses the non-ideal region.
Examples which satisfy ⇥tB�⌥⇤ (w ⇤B) = 0:

• Ideal plasma dynamics:

E + v ⇤B = 0

E + v ⇤B = � 1
e n
⌥Pe(n) ⇧ w = v

• Hall MHD:
E + v ⇤B =

1
e n

j⇤B ⇧ w = ve = v � 1
e n

j

• many other cases under constraints: e.g. 2D dynamics with B ⌃= 0:

E + v ⇤B = .... +
me

n e2

�
⇥j
⇥t

+⌥ · (vj + jv)
⇥

+ ...

               Ohms law                                                 induction equation



Reconnection: 

5. Conditions for magnetic reconnection to occur

E + v ⇥B = 0 ⇤ ⇤

⇤t
B�⇧⇥ v ⇥B = 0

⇤ Conservation of magnetic flux and field line topology: No reconnection.

Reconnection can only occur if the plasma is non-ideal.

E + v ⇥B = N (e.g. N = ⇥j)
⇤

⇤t
B�⇧⇥ v ⇥B = ⇧⇥N

if N = �v ⇥B +⇧�

⇤ ⇤

⇤t
B�⇧⇥w ⇥B = 0 for w = v � �v

a) N = �v ⇥B +⇧� and �v smooth: No reconnection but slippage.

b) N = �v ⇥B +⇧� and �v singular: Reconnection (2D).

c) N ⌅= �v ⇥B +⇧� Reconnection (3D).
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a) N = �v ⇥B +⇧� and �v smooth: No reconnection but slippage.

b) N = �v ⇥B +⇧� and �v singular: Reconnection (2D).

c) N ⌅= �v ⇥B +⇧� Reconnection (3D).implies either

a) E⋄B ≠ 0   This is 3D- (or B≠0 or E⋄B ≠ 0) reconnection  or 2.5D (guide field) 
reconnection

b) E⋄B =0 and E≠0 where B=0. This is 2D (or x-point or E⋄B =0) reconnection.

Remark: Note that these are conditions on the evolution of the electromagnetic field - 
they are not  restricted to MHD. 
Two cases of reconnection: vanishing or non-vanishing helicity source term (E⋄B).



Reconnection geometry: 

2D:  B(x,y) and v(x,y) 
are in one plane. The 
diffusion region (gray 
area) is bounded in 
the plane. 

2.5D:  B and v are 
functions of (x,y) but B 
has a component out 
of the plane. The 
diffusion region is 
bounded in (x,y) but 
not in z.

3D:  B and v are 
functions of (x,y,z). 
Also the diffusion 
region is bounded in 
all 3 dimensions 

Historically most work on reconnection has been done using the (much more 
simple) 2D and 2.5D case. However, while this approximation is justified for 
Tokamaks and other technical plasmas which have an inbuilt symmetry, in 
astrophysical plasmas reconnection is inherently 3D. 

• Diffusion region: domain where |N| >> |v x B|



Magnetic Helicity: 

The homogeneous Maxwell’s equation yield a balance equation for the helicity 
density: 

6. 2D or E · B = 0-Reconnection

E + v ⇤B = N = �v ⇤B +⌥�
⇧ Ẽ + w ⇤B = 0 with w = v � �v Ẽ = E�⌥�

w =
Ẽ⇤B

B2
.

⇧ Ẽ · B = 0; Ẽ · w = 0

A flux conserving flow w exists and it is smooth with exception of points where B = 0 but N ⌃= 0.

• The fields B and w are locally tangential to a plane perpendicular to Ẽ.

• Reconnection can occur only at null points of the magnetic field.

• The source term of the helicity density Ẽ · B vanishes.

Reminder on magnetic helicity: The homogeneous Maxwell’s equation yield a balance equation for the
helicity density:

⌅

⌅t
A · B⌅ ⇤⇥ ⇧

hel. density
+⌥ · (�B + E⇤A⌅ ⇤⇥ ⇧

hel. current

) = �2E · B⌅ ⇤⇥ ⇧
hel. source

Integrating over are volume yields an expression for the total helicity

d

dt

�

V
A · B d3x = �2

�

V
E · B d3x ,

Integrating over a closed volume (no helicity current across the boundary) yields an 
expression for the total helicity:
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⌅

⌅t
A · B⌅ ⇤⇥ ⇧

hel. density
+⌥ · (�B + E⇤A⌅ ⇤⇥ ⇧

hel. current

) = �2E · B⌅ ⇤⇥ ⇧
hel. source

Integrating over are volume yields an expression for the total helicity

d

dt

�

V
A · B d3x = �2

�

V
E · B d3x ,

The helicity integral (total helicity) is a measure for the linkage of magnetic 
flux in the domain

7.3. Interpretation

For systems of (untwisted) flux tubes the total
magnetic helicity can be expressed as a sum
over the mutual linking of flux tubes [?]:

H(B) = 2
�

i<j

lk(Ti, Tj)�i�j ,

where lk(Ti, Tj) is the linking number of the
tube Ti and Tj with magnetic fluxes �i and
�j .

c)
This interpretation was generalized by [?] for the generic case where field lines are not closed using
asymptotic linking numbers.

Note: Twist is a linkage of sub-flux tubes:



E⋄B =0 Reconnection: 

If E⋄B =0 then N is perpendicular to B, N =δv x B but now δv is singular at B=0.

such that the fields B and w are locally tangential to a plane perpendicular to E.  
Hence the evolution is (locally) two-dimensional.

•The reconnection occurs at a null-point (x-point) of the magnetic field. 
•The source term of the magnetic helicity density (E⋄B) vanishes.
•The flux transport velocity w becomes singular at the x-point.

lines: magnetic field; arrows: flux transport velocity
electric field perp. to plane

Note if j || E ⇒ j x B || v. The Lorentz force can drive  
the process.  

7. 2D or E · B = 0-Reconnection

E + v ⇤B = N; N = �v ⇤B

⇧ E + w ⇤B = 0 with w = v � �v

w =
E⇤B

B2
, ⇧ E · B = 0; E · w = 0

A flux conserving flow w exists and it is smooth with exception of points where B = 0
but N ⌃= 0.

• The fields B and w are locally tangential to a plane perpendicular to Ẽ.

• Reconnection can occur only at null points of the magnetic field.

• The source term of the helicity density Ẽ · B vanishes.



E⋄B =0 Reconnection (continued): 
Since for a generic null B is linear in x, w is of the type −x/x2 along the inflow 
direction, hence it has a 1/x singularity at the origin. 
Thus a cross-section of magnetic flux is transported in a finite time onto the null-line. 
 

6.1. Non-Ideal Evolution at an O-point

At the O-point w has the local structure:

a) b)
Manifestation of loss (a) or creation (b) of flux at an O-point

Since for a generic null B is linear in x, w is of the type �x/x2. It has a 1/x singularity at the origin.
Thus a cross-section is transported in a finite time onto the null-line.

T =
� T

0
dt =

� 0

x0

dt/dx dx =
� 0

x0

1/wxdx ⇤ x2
0/2

Rate of flux annihilation:

d�rec

dt
=

d

dt

�
B·nda =

�
Ez dz (=

�
wrBphi dz)

6.2. Non-Ideal Evolution at an X-point

Structure of w at an X-point:

Reconnection
Again the transporting flow has a 1/x singularity ⇥ The flux (a cross section) is transported in a
finite time onto the null-line. But this time the singularity is of X-type. Simultaneously the null line
is the source of flux leaving the axis along the other direction. ⇥ No loss of flux but a re-connection.

Rate of reconnected flux:

d�rec

dt
=

d

dt

�
B·nda =

�
Ez dz (=

�
wxBy dz)Rate of reconnected flux:



Remark: The above analysis holds also for an 0-point

Rate of flux destruction/generation:

6.2. Non-Ideal Evolution at an X-point

Structure of w at an X-point:

Reconnection
Again the transporting flow has a 1/x singularity ⇥ The flux (a cross section) is transported in a
finite time onto the null-line. But this time the singularity is of X-type. Simultaneously the null line
is the source of flux leaving the axis along the other direction. ⇥ No loss of flux but a re-connection.

Rate of reconnected flux:

d�rec

dt
=

d

dt

�
B·nda =

�
Ez dz (=

�
wxBy dz)

In 2D an electric field at an o-point measures the rate of destruction/generation 
of magnetic flux while an electric field at an x-point measures reconnection of 
magnetic flux. 



E⋄B =0 Reconnection (continued): 
First simple models of two-dimensional steady state reconnection have been set up 
by  Sweet and Parker (1957/8) and later Petcheck (1964) on the basis of 
conservation of mass and flux in the framework of resistive MHD.  
 
They provide a scaling of the Alfvén Mach number (the ratio of inflow plasma velocity 
to inflow Alfvén velocity) in terms of the Lundquist number. 

6.3. Reconnection rate (2D)

• The reconnection rate was originally defined for a two-dimensional model of steady state recon-
nection (Sweet-Parker model, 1957) as the Alfvén Mach number, i.e. the ratio of inflow plasma
velocity to inflow Alfvén velocity:

Le is the global scale length, vAe = Be/
⇥

⇥µ0 is the Alfvén speed in the inflow region

MAe =
ve

vAe
=

E

vAeBe
=

absolute reconnection rate
maximum inflow of flux

= relative reconnection rate,

• The electric field at the x-point is an absolute measure of the reconnected flux.

d2�rec

dt dz
= Ez

• Both definitions are equivalent if the magnetic field does not vary along the inflow channel.



E⋄B =0 Reconnection (continued): 
The models provide a scaling of the Alfvén Mach number in terms of the Lundquist 
number: Alfvén Mach number in terms of the Lundquist number (magnetic Reynolds number) :

S = µ0LevAe/�

MAe =
ve

vAe
=

E

vAeBe
=

�
⇤

⇥

1⌅
S

“Sweet-Parker” S=108

= 10�4

�
8 ln S “Petschek” S=108

= 2 · 10�2

Reconnection rates of the order of MAe = 0.1 yield time scales for global energy release and magnetic
reconfiguration that are consistent with those seen in solar flares and magnetospheric substorms (Miller
et al., 1997).

Fast reconnection:
lim

S⇥⇤
(⇥ 1/ ln(S))

Due to the high Lundquist numbers in the Solar Corona (108- 1012) the scaling of the 
reconnection rate with S is important.

Reconnection rates of the order of MAe = 0.1 yield time scales for global energy 
release and magnetic reconfiguration that are consistent with those seen in solar 
flares and magnetospheric substorms (Miller et al., 1997).  
 
In this respect Petschek’s model was a significant improvement to Sweet &Parker as 
it provides higher reconnection rates.
 
The term “fast reconnection” is used to describe reconnection rates which
scale like Petschek reconnection or faster. 



E⋄B =0 Reconnection (continued): 
Warning: Many models of reconnection use the assumption that the process is time-
independent (stationary) and the electric field is replaced by a gradient (E=- ∇Φ). 
These are approximations which hold only for a region close to the reconnection site 
and for a certain time interval. Globally reconnection is always  time-dependent and 
E≠- ∇Φ. 
 

globally reconnection is 
time-dependent

for a certain time and close  
to the x-point it is approximately  
stationary



E⋄B =0 Reconnection: Collisionless  
Collisionless: There are not enough collisions between electrons and ions to explain 
the reconnective electric field at the x-point with η j (E ≠ η j).
 
Generalised Ohm’s law: 

6.4. Collisionless reconnection

Generalised Ohm’s law:

me

n e2

�
⌃j
⌃t

+⌃ · (j v + v j� 1
n e

jj
⇥

= E + v ⇤B� 1
n e

j⇤B +
1

n e
⌃ · Pe � �j

• Scale on which the hall term dominates over the v ⇤B term: � < di = c/⇤pi ion inertial length

• Scale on which the electron inertia dominates the hall term: electron inertial length, de =
c/⇤pe,(⇤pe =

⇤
4⇥ne2/me). In the solar corona de ⇧ 1m, in the magnetotail de ⇧ 1km!

Electron inertial length: de=c/ωpe

Schematic of the multiscale structure of 
the dissipation region during anti-
parallel reconnection. Electron (ion) 
dissipation region in white (gray) with 
scale size c/ωpe (c/ωpi). Electron (ion) 
flows in long (short) dashed lines. In-
plane currents marked with solid dark 
lines and associated out-of-plane 
magnetic quadrupole field in gray (From 
Drake & Shay, Collisionless 
Reconnection in ``Reconnection of 
magnetic fields'', CUP 2007)
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• Scale on which the electron inertia dominates the hall term: electron inertial length, de =
c/⇤pe,(⇤pe =

⇤
4⇥ne2/me). In the solar corona de ⇧ 1m, in the magnetotail de ⇧ 1km!



E⋄B =0 Reconnection: Collisionless  
 Data from a PIC simulation of anti-parallel 
reconnection with mi/me =100, Ti/Tp = 12.0 
and c = 20.0 showing: 
(a) the current Jz and in-plane magnetic
field lines;  
(b)the self-generated out-of-plane field Bz  
(c) the ion outflow velocity vx;  
(d) the electron outflow velocity vxe; and  
(e) the Hall electric field Ey.  
Noticeable are the distinct spatial scales of 
the electron and ion motion, the substantial 
value of Bz  which is the signature of the 
standing whistler and the strong Hall 
electric field Ey, which maps the magnetic 
separatrix. The overall reconnection 
geometry reflects the open outflow model of 
Petschek rather than the elongated current 
layers of Sweet-Parker (From Drake & 
Shay, Collisionless Reconnection in 
``Reconnection of magnetic fields'', CUP 
2006).



E⋄B =0 Reconnection: Summary 

• E⋄B =0 (2D) reconnection occurs at x-points only
• The reconnection rate (rate of reconnected flux/time/length) is given by the electric 
field at the x-point
• In simple stationary models of the process (Sweet-Parker / Petcheck model) the 
rate of reconnected flux is proportional to the (upstream) Alfvén Mach number 
(traditionally also called reconnection rate), which in turn can be expressed as a 
function of the Lundquist number. 
• More detailed plasma physics (Hall MHD, two fluid, kinetic) shows a more 
complicated structure of the reconnection region but agrees on large scales with 
MHD results.   
 
 



E⋄B ≠0 Reconnection: Stationary

�⌅� + v ⇥B = R

� =

⇥
R⇥ds

⇧ ⌅⇤ ⌃
�n�id

+ �(x0, y0)⇧ ⌅⇤ ⌃
�id

⇤
�
�⌅�n�id. + vn�id. ⇥B = R
�⌅�id. + vid. ⇥B = 0

v = vn�id. + vid.

General property: No direct coupling between external
flow (MAe) and absolute reconnection rate.

Non-ideal solutions shows counter rotating flows above
and below the reconnection region.

Basic non-ideal solution is inherent 3D and non-
periodic ⇤ 3D is not a simple approximation of any
2/2.5 D solution.

E+ v x B = N;   E⋄B= N⋄B ≠0;   stationary: E= -∇Φ.

N
NN



E⋄B ≠0 Reconnection: Reconnection rate

2.1. 3D reconnection: Basic non-ideal solution

Proof of counter rotating flows:

0 =

�
E · dl =

⇥

L

E · dl +

⇥

R1

Er dr �
⇥

R2

Er dr

⇤
⇥

L

E · dl = 2

⇥
Er dr = 2

⇥
v�Bz dr

2.2. Reconnection rate 3D (Rate of reconnected flux)

The rate of ‘mismatching’ of flux is given by the di⇥erence of the plasma velocity above
and below the reconnection region. The rate at which flux crosses any radial line be-
tween the origin and the boundary of D is given by the potential di⇥erence along this
line, i.e

d�mag

dt
=

⇤

L

E · dl =

⇤

R

�
win �wout

⇥
⇤B · dr

The rate of ‘mismatching’ of 
flux is given by the difference 
of the plasma velocity above 
and below the reconnection 
region.



E⋄B ≠0 Reconnection: Time-dependent



E⋄B ≠0 Reconnection

There are no pairwise  reconnecting field lines. For processes bounded in 
time reconnecting flux tubes exist which show a twist consistent with the 
helicity production. 



E⋄B ≠0 Reconnection: Null points

Generic (hyperbolic) 3D null point. Fan:
blue, Spine: red.

Fan planes of two null points
intersect in a separator.

Process depends on the direction of the electric field at the null point. Two 
basic cases: 
• Electric field aligned with the spine axis 
• Electric field tangent to the fan plane 



E⋄B ≠0 Reconnection: Null points

Spine aligned electric field (electric current)

14.1. Reconnection at null points

Process depends on the direction of the electric field at the null point. Two basic cases:

• Electric field aligned with the spine axis

• Electric field tangent to the fan plane

Example: Spine aligned electric field

Proof of rotational flows analogous to B ⇥= 0 case (from Pontin, Hornig & Priest GAFD 2004)Reconnection decouples the magnetic flux entering the diffusion region 
along the spine from the flux leaving the diffusion region along the fan 
plane.   
 
The relative motion of the two fluxes (the reconnection rate) is given by the 
integral of the electric field along the spine.  
 



E⋄B ≠0 Reconnection: Null points

Spine aligned electric field (electric current)

Reconnection decouples the magnetic flux 
entering the diffusion region along the 
spine from the flux leaving the diffusion 
region along the fan plane.   
 
The relative motion of the two fluxes (the 
reconnection rate) is given by the integral 
of the electric field along the spine.  
 



E⋄B ≠0 Reconnection: Turbulence

Formation of a turbulent cascade of reconnection in a braided magnetic field:

Antonia Wilmot-Smith, Gunnar Hornig, David Pontin, Cambridge Workshop 
on Reconnection, Fairbanks Alaska 2009 



E⋄B ≠0 Reconnection: Summary

•Three-dimensional reconnection is structurally different from 2 or 2.5 dimensional 
reconnection. 
•The reconnection rate is given by the integral over the parallel electric field along a 
certain field line. 
•The reconnection rate is not directly related to inflow or outflow velocities. 
•The flux undergoing reconnection is restricted to thin flux layers intersecting in the 
non-ideal region.
•In particular we have no 1-1 correspondence of reconnecting field lines. Instead 
we have flux surfaces which are mapped onto each other. 
•For a reconnection process which is limited in time, these flux surfaces are closed, 
i.e. they form perfectly reconnecting flux tubes. The counter rotating flows induce a 
twist in these tubes, which is consistent with the helicity production of the process. 



A first impression ....
This illustrates a 2D stationary 
process,  magnetic field of x-type 
structure,  plasma flow (yellow 
arrows) is of x-type as well, jxB 
forces can drive plasma 

.... which is misleading in many 
aspects ...

• Cartoon is 2D while almost all real 
reconnection processes are 3D.

• It suggests a stationary process but 
actually reconnection is rarely 
stationary.

• The cartoon suggest that a 
magnetic null is necessary for 
magnetic reconnection, which is 
not true.



Common Misconceptions about Reconnection: 

• “Magnetic reconnection heats the plasma” The Ohmic heating due to the 
reconnection event itself is small due to the small size of dissipation 
region and a low resistivity. The major part of the magnetic energy 
released is converted into kinetic energy. The heating usually occurs 
away from the reconnection region proper via a number of non-ideal 
plasma processes (shocks, waves, adiabatic heating, viscous heating).  

• “Magnetic reconnection occurs at an X-line”    
The notion of an X-line (a magnetic field line which has in a plane 
perpendicular to it an X-type field) is a notion deduced from 2D (or 2.5D) 
models. There is no distinguished “X-line” in a generic 3D magnetic field, 
instead there are whole regions of magnetic flux which satisfy this 
criterium. Moreover reconnection can also occur at an “0-line”.  

• “Magnetic reconnection occurs along a separator” 
A separator is a field line formed by the intersection the fan planes of 
two null points. It is, for instance, not present in Tokamaks but still we 
have reconnection in these devices.



Common Misconceptions about Reconnection: 

• “Magnetic reconnection is associated with fast (Alfvénic) flows”  
Mach numbers of  0.02 - 0.2 are typically found in stationary 2D 
simulations. However, it is known that reconnection in reality is 3D and 
time-dependent. There is no necessity for time-dependent processes to 
have high flow velocities.

 



Some open questions: 

• How does collisionless reconnection work in 3D configurations? 

• Is there a “generic” dissipation mechanism? 

• How common is magnetic reconnection? What is the spectrum of 
reconnection?  

• How does reconnection work in relativistic systems? 

• Observational consequences?



 What is the problem? 
• Complex three-dimensional geometry, complex micro physics in 
collisonless plasmas

• Coupling of micro (kinetic) physics and large scale dynamics (cross-scale   
coupling) 

• Spatial resolution in simulations is too low by many orders of magnitude. 

What is the problem?

• Complex three-dimensional geometry

• Coupling of micro (kinetic) physics and large scale dynamics (cross-scale coupling)

• Spatial resolution in simulations is too low by many orders of magnitude.

global length scale

electron-inertial length
=

108m

10�1m
= 109 global length scale

gyro e�ects
=

108m

10�2m
= 1010

Typical resolution of a 3D simulation: 300.(Typical resolution of a 3D simulation: 300)


