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T&Cs, basic phenomenology etc 

Photosphere, Chromosphere: 
collisional, gas pressure 
dominates 

Chromosphere, TR, lower corona: 
collisional, magnetic field dominates 

Corona: collisional/weakly collisional, 
magnetic field dominates 

Heliosphere / Solar Wind: 
collisionless,  
magnetic pressuregas pressure 



Shock: basic physics 

 Perturbation travels faster than the local phase 

speed  wave is steepening, becomes non-linear 



Simple 1D (M)HD shock model 
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 Normal component Bn does not change!! (divB=0) 

 Normal mass flux is conserved (mass conservation) 

 Total energy density (I + K + M) is conserved 

 Momenta (separately, N and T) are conserved 
 ET is conserved 

UPSTREAM DOWNSTREAM 
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Rankine-Hugeniot relations 

 MHD equations in conservative form 
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 Mass conservation 

 

 Parallel momentum conservation 
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 Total energy conservation 

 

 
 ET conservation 

 

 

 divB =0 

Rankine-Hugeniot relations 
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Simplest case: 1D parallel shock 

 1D case, only normal component of B and V 

 

 

 

 

 

 

 

 

 Solution 

- Shock compression ratio 
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MHD shocks v. MHD waves 

Alfven 

 

 

Not compressive  No shock; r=1 

discontinuity 

Fast magneto-

sonic 

 

 

 

 

B correlates with 
ρ 

Slow magneto-

sonic 

 

 

 

B anti-correlates 

with ρ 

 

[Valery Nakariakov: Waves and instabilities] 



Collisionless shocks 

 Collisionless   ≡   LR > m.f.p. 

 

 Particles don’t thermalise due to collisions 

 

 Particle scattering (velocity/pitch-angle change) is 

determined by magnetic field spatial scale 

(Turbulent magnetic field!!!)  

 

 Collisionless shocks are more versatile and require 

more complicated math description 



Collisionless shocks 

 Quasi-perpendicular shock 

 

 

 

 

 

 

 

 

 Quasi-parallel shock 

Small angle 

Large angle 

Ions escape / travel from 

the shock 

Ions hang around / rotate 

into the shock 



Collisionless shocks: particle acceleration 

V 

P0 

P0+2mV 

 Type I Fermi acceleration: particle repeatedly 

reflected by “mirrors” moving towards each other 

 

 Guarantied energy gain!!  



Collisionless shocks: particle acceleration 

 Both HD and collisionless shocks accelerate 

particles but… 

 

 …when m.f.p. is short, the energy gained by 

particles becomes “thermal” (particle distribution is 

Maxwellian) 

 

 Therefore, particle acceleration on collisionless 

shocks is unavoidable, as plasma heating on HD 

shocks 

 



Energy conversion on shocks 

 MHD shocks 
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Shocks in the corona 

Forced reconnection in non-neutral Harris 
current sheet (Gordovskyy et al, 2011) 

Petschek 1964 

 Shocks in the reconnection regions 



Shocks in the corona 

Footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube 
Fedun et al. 2011 

 Upward-propagating waves becoming non-linear 

(can contribute to the coronal heating) 



Shocks in the SW / Heliosphere 

 Coronal Mass Ejections 

NASA / SOHO / LASCO 

Corona-Romero & Gonzalez-Esparza 2012 

S White / U Mariland 

Karpen et al. 2012 



Shocks in the SW / Heliosphere 

 Planetary magnetospheres 

Belmont / Tsyganenko / 2008 

Magnetic field, nT 

Density, 1/cm3 Temperature, eV 



Shocks outside Solar System 

Tiho supernova remnant Veil nebula supernova remnant 

Shock generated star formation / AstroBEAR code 
Cygnus A DRAGN 



Summary: shocks 

 Creates structures in the solar/space plasmas 

 

 Fast flow kinetic energy is converted into heat, non-

thermal particles, waves 

 

 

 

 

 

 

 

 

 Occurs during magnetic reconnection and 

eruptions in the corona, ubiquitous in the solar wind, 

Earth/planetary magnetospheres etc  
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What is turbulence? 

 Essentially non-linear, fluid phenomenon 

 

 Occurs when inertial forces in fluid dominate over 

viscosity 

 

 Results in energy transfer from larger to smaller 

spatial scales 
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Turbulence: basic physics 
(Kinetic)  
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Turbulence: theory 

 Results in energy transfer from larger to smaller 

spatial scales 

 

  Steady energy input results in a steady state solution: 

Kolmogorov spectrum with the inertial range 

Energy IN 

Energy OUT 

Inertia > Viscosity High viscosity 



Waves v. Turbulence 

 “Waves or turbulence?!” – Turbulence can always 

be represented by waves with a wide spectrum 

 

 Therefore, Acoustic / Alfven / Magneto-sonic / 

etc turbulence 



MHD v. HD Turbulence 

 Magnetic field adds a preferred direction, making 

turbulence anisotropic, with more interesting 

effects 

 

 

 

 

 

 

 

 

 

 
 Advection is stronger ||B, dissipation is stronger  ┴B, 

- similar to other transport effects in plasma 
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Turbulence in collisionless plasma 

 Its possible to have wide spectrum kinetic waves with 
the cascade and dissipation at high k 

 

 Collisionless plasma may have viscosity due to wave-

particle interaction 

 

 Same 5/3 spectrum is 

observed in SW turbulence, 

the inertial range spanning 6 

orders of magnitude – SW 

turbulent spectrum seems to 

be universal from MHD to 

electron scales 

 

 Particle acceleration 
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Turbulence: particle acceleration  
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 Type II Fermi acceleration: particle repeatedly 

scattered by moving waves, its momentum & energy 

changing stochastically 

 

 May gain or lose energy depending on the wave 

spectrum 



Turbulence in the solar corona 

Temperature and density in twisted coronal 
loop (Pinto et a. 2016) 

Temperature evolution in kink-unstable 
twisted magnetic fluxtube (Hood et al. 
2009) 

 Turbulisation of plasma during 

magnetic reconnection 



Turbulence in the solar corona 

Thermal broadening 

Non-thermal broadening 

Turbulent line broadening in flares, correlates with the 
temperature (Doschek et al. 2008) 

Turbulence spatially correlates with the temperature and energy release (Gordovskyy et al. 2016) 

 Non-thermal line broadening indicates strong 

turbulence in flares  



Turbulence in the solar corona 

Kontar et al. 2016 PRL 

 Turbulence accounts for ~1% of the energy released 

in solar flares, but can be extremely important for 

non-thermal particle scattering 



Turbulence in solar wind 

Belcher & Davis 1971 Leamon et al. 1996 

Cluster mission observed the turbulent eddies in 
SW in-situ / NASA / Derelli 2013 



Summary: turbulence 

 Occurs when inertial forces dominate over 

collisions 

 

 Transfers energy from large-scale plasma flows to 

small-scale flows, then dissipates, converting 

energy into heat. 

 

 

 

 

 

 

 

 Destroys large-scale structures 

Energy IN 

Energy OUT 

Inertia > Viscosity High viscosity 



Particle acceleration and transport 

 Different types of particle acceleration: stationary 

electric field, waves & turbulence, shocks, 

betatron (collapsing magnetic traps) [Eduard 

Kontar’s lecture on Monday] 

Magnetic energy 

Kinetic energy 
of V > Cs plasma flow  

Kinetic energy  
of plasma waves  

Kinetic energy  
of non-thermal particles  



Particle acceleration in the corona and SW 

[Sarah Matthews: 

Solar & Stellar flares] 



Particle acceleration in the corona and SW 

DC acceleration in RCS 



Particle acceleration in the corona and SW 

Gordovskyy et al. 2011 
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Particle acceleration in the corona and SW 

DC acceleration in RCS 

Fermi I acceleration on shocks 

Fermi II 

acceleration on 

waves 



Particle acceleration in the corona and SW 

Gordovskyy et al. 2014 



Outstanding problems 

 How, where and when particles are accelerated? 

 

 Do coronal and IPS particles come from the same 

source of acceleration? 

 

 Are the same mechanisms responsible for electrons 

and ions? 

 

 How on Earth you can transport a huge amount of 

charged particles from the upper corona to the 

chromosphere?  



Precipitating electrons 
# Footpoint area ~1-10 Mm2 

# Electron flux density is about 1023-24 m-2 s-1, 
current ~104-5A/m2, corresponding to B~104T 
 

Compensation in the corona 

# fdown = fup = 1023-24 

   for n=1016m-3, <v> = 107-8m/s 
# Return current is not “thermal” 
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Summary: turbulence 
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collisions 
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Particle acceleration and transport 

 Different types of particle acceleration: stationary 

electric field, waves & turbulence, shocks, 

betatron (collapsing magnetic traps) [Eduard 

Kontar’s lecture on Monday] 

Magnetic energy 

Kinetic energy 
of V > Cs plasma flow  

Kinetic energy  
of plasma waves  

Kinetic energy  
of non-thermal particles  

 Still no clear, comprehensive picture of particle 

acceleration and transport in the corona and 

heliosphere 


