MANCHESTER

SHOCKS, TURBULENCE, and PARTICLE ACCELERATION

MYKOLA GORDOVSKYY University of Manchester

northumbria STFC Introductory Solar System Plasma Physics Summer School, 12 September 2017

Outline

Shocks

Turbulence

Particle acceleration

Outline

Basic phenomenology

Shocks

- Basic physics (conservation laws etc)
- Shocks in the solar corona and collisionless SW plasma
- Fermi I particle acceleration

Turbulence

- Basic physics in different regimes (collisionless, HD)
- Existing misconceptions and non-existent controversies
- Turbulence in the corona and SW
- Fermi II particle acceleration
- Particle acceleration
 - Mechanisms of particle acceleration
 - Outstanding problems
- Summary and open questions

T&Cs, basic phenomenology etc

<u>Thermal</u>

- Collisional
- Particle distribution quickly becomes Maxwellian
- Behaves like a fluid
- Magnetohydrodynamics
- Fluid lectures:
 - Philippa Browning: MHD;
 - Gunnar Hornig: Magnetic reconnection;
 - Valery Nakariakov:
 Waves & instabilities

<u>Non-thermal</u>

- Collisionless
- No reason for Maxwellian distribution
- Behaves like a N-body system
- Kinetics
- Kinetic lectures:
 - David Tsiklauri: Plasma kinetics;
 - Eduard Kontar: Highenergy solar/stellar atmospheres

T&Cs, basic phenomenology etc

	<u>Thermal</u>	<u>Non-thermal</u>	
-	Collisional	Non-collisional	
•	Particle distribution quickly becomes Maxwellian	 Most interesting thing happen No reason for Maxwellian distribution 	
•	Behaves like a fluid	 Behaves like a N-body Events in the solarystem corona: Non- 	
•	Magnetohydrodynd	mics (energetic	
•	 Fluid lectures: Philippa Browning: Gunnar Hornig: Magnetic reconne Valery Nakariakov Waves & instabilitie 	particles) in thermal plasma MHD; ction; s Kinetic lectures: David Tsiklauri: Plasma kinetics; Eduard Kontar: High- energy solar/stellar atmospheres	

T&Cs, basic phenomenology etc

Heliosphere / Solar Wind: collisionless, magnetic pressure≈gas pressure

Corona: collisional/weakly collisional, magnetic field dominates

Chromosphere, TR, lower corona: collisional, magnetic field dominates

Photosphere, Chromosphere: collisional, gas pressure dominates

Shock: basic physics

 Perturbation travels faster than the local phase speed ⇒ wave is steepening, becomes non-linear

Simple 1D (M)HD shock model

- DOWNSTREAM UPSTREAM • $B_{T0}=B_{T1}=0$ -> Parallel shock ~ NO • $B_{\rm N0} = B_{\rm N1} = 0 ->$ ρ_0 Perpendicular shock p_0 SHOCK
 - Normal component B_n does not change!! (divB=0)
 - Normal mass flux is conserved (mass conservation)
 - Total energy density (I + K + M) is conserved
 - Momenta (separately, N and T) are conserved
 - $E_{\rm T}$ is conserved

$$\vec{\nabla} \times \vec{E} = \frac{\partial \vec{B}}{\partial t} = 0 \qquad \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} = 0$$

$$\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} = 0$$

$$\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} = 0$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_E}{\varepsilon_0} = 0 \qquad \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

$$\vec{\nabla} \times \vec{E} = \frac{\partial \vec{B}}{\partial t} = 0 \qquad \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} = 0$$
$$\frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} = 0$$
$$\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} = 0$$
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_E}{\varepsilon_0} = 0 \qquad \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0$$
$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

Simple 1D (M)HD shock model

- DOWNSTREAM UPSTREAM • $B_{T0}=B_{T1}=0$ -> Parallel shock ~ NO • $B_{\rm N0} = B_{\rm N1} = 0 ->$ ρ_0 Perpendicular shock p_0 SHOCK
 - Normal component B_n does not change!! (divB=0)
 - Normal mass flux is conserved (mass conservation)
 - Total energy density (I + K + M) is conserved
 - Momenta (separately, N and T) are conserved
 - $E_{\rm T}$ is conserved

Rankine-Hugeniot relations

MHD equations in conservative form

$$\frac{\partial \breve{H}}{\partial t} = - \vec{\nabla} \cdot Flux_{\breve{H}} + Sources_{\breve{H}}$$

Conserved value	"Normal" form	Conservative form	Flux of value
Mass	$\frac{\partial\rho}{\partial t}+\nabla(\rho\mathbf{V})=0$	$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{V}) = 0$	ρ V
Momentum	$\rho \left[\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \nabla) \mathbf{V} \right] = -\nabla p + \mathbf{j} \times \mathbf{B}$	$\frac{\partial(\rho \mathbf{V})}{\partial t} + \nabla \cdot \left((\rho \mathbf{V}) \mathbf{V} + \left(\mathbf{p} + \frac{\mathbf{B}^2}{2\mu} \right) \mathbf{I} - \frac{\mathbf{B}\mathbf{B}}{\mu} \right) = 0$	$(\rho \mathbf{V})\mathbf{V} + \left(\mathbf{p} + \frac{\mathbf{B}^2}{2\mu}\right)\mathbf{I} \\ - \frac{\mathbf{B}\mathbf{B}}{\mu}$
Energy	$\frac{\partial}{\partial t} \left(\frac{p}{\rho^{\gamma}} \right) + \left(\mathbf{V} \cdot \mathbf{\nabla} \right) \left(\frac{p}{\rho^{\gamma}} \right) = S$	$\frac{\partial E}{\partial t} + \nabla \cdot \left(\left(E + p + \frac{B^2}{2\mu} \right) \mathbf{V} - \frac{\mathbf{B}(\mathbf{V} \cdot \mathbf{B})}{\mu} \right) = 0$	$\left(E + p + \frac{B^2}{2\mu}\right)\mathbf{V} - \frac{\mathbf{B}(\mathbf{V} \cdot \mathbf{B})}{\mu}$

$$E = \frac{p}{\gamma - 1} + \frac{\rho V^2}{2} + \frac{B^2}{2\mu}$$
 is total energy density (Internal + Kinetic + Magnetic)

Rankine-Hugeniot relations

- Mass conservation $[\rho V_N] = 0$
- Parallel momentum conservation

$$\left[\rho V_{\rm N}{}^2 + p + \frac{B^2}{2\mu_0}\right] = 0$$

Perpendicular momentum conservation

$$\left[\rho \vec{V}_{\rm T} V_{\rm N} + \frac{B_N}{\mu_0} \vec{B}_{\rm T}\right] = 0$$

Total energy conservation

$$\left[V_{\rm N}\left(\frac{\rho V^2}{2} + \frac{\gamma p}{\gamma - 1}\right) + V_{\rm N}\frac{B^2}{\mu_0} - B_{\rm N}\frac{\vec{V}\cdot\vec{B}}{\mu_0}\right] = 0$$

• $E_{\rm T}$ conservation

$$\left[V_{\rm N}\vec{B}_{\rm T} - B_{\rm N}\vec{V}_{\rm T}\right] = 0$$

divB =0

 $[B_{\rm N}]=0$

 $[A] \equiv A_1 - A_0$

Simplest case: 1D parallel shock

- 1D case, only normal component of B and V $\rho_1 V_1 = \rho_0 V_0$

$$\rho_1 V_1^2 + p_1 = \rho_0 V_0^2 + p_0$$
$$\frac{\rho_1 V_1^3}{2} + \frac{\gamma p_1 V_1}{\gamma - 1} = \frac{\rho_0 V_0^3}{2} + \frac{\gamma p_0 V_0}{\gamma - 1}$$

- Solution
 - Shock compression ratio

$$r = \frac{\rho_1}{\rho_0} = \frac{V_0}{V_1} = \frac{(\gamma+1)M^2}{(\gamma-1)M^2+2} \approx \frac{(\gamma+1)}{(\gamma-1)} \approx 4$$

where $M = \frac{V_0}{C_{s0}} = V_0 \sqrt{\frac{\rho_0}{\gamma p_0}}$ is the Mach number

177

153

MHD shocks v. MHD waves

[Valery Nakariakov	: Waves and instabilities]

Alfven	Not compressive	No shock; <i>r</i> =1 discontinuity
Fast magneto- sonic	B correlates with ρ	
Slow magneto- sonic	B anti-correlates with ρ	

Collisionless shocks

- Collisionless $\equiv L_R > m.f.p.$
- Particles don't thermalise due to collisions
- Particle scattering (velocity/pitch-angle change) is determined by magnetic field spatial scale (Turbulent magnetic field!!!)
- Collisionless shocks are more versatile and require more complicated math description

Collisionless shocks

Collisionless shocks: particle acceleration

- Type I Fermi acceleration: particle repeatedly reflected by "mirrors" moving towards each other
- Guarantied energy gain!!

Collisionless shocks: particle acceleration

- Both HD and collisionless shocks accelerate particles but...
- ...when m.f.p. is short, the energy gained by particles becomes "thermal" (particle distribution is Maxwellian)
- Therefore, particle acceleration on collisionless shocks is unavoidable, as plasma heating on HD shocks

Energy conversion on shocks

MHD shocks

of V > C_s plasma flow Thermal energy
of V < C_s plasma flow

Collisionless shocks

Energy conversion on shocks

Energy conversion on shocks

Shocks in the corona

Shocks in the reconnection regions

Petschek Reconnection

Petschek 1964

Forced reconnection in non-neutral Harris current sheet (Gordovskyy et al, 2011)

Shocks in the corona

 Upward-propagating waves becoming non-linear (can contribute to the coronal heating)

Footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube Fedun et al. 2011

Shocks in the SW / Heliosphere

Coronal Mass Ejections

NASA / SOHO / LASCO

Karpen et al. 2012

Corona-Romero & Gonzalez-Esparza 2012

Shocks in the SW / Heliosphere

Temperature, eV

Planetary magnetospheres

Belmont / Tsyganenko / 2008

Shocks outside Solar System

Shock generated star formation / AstroBEAR code

Cygnus A DRAGN

Tiho supernova remnant

Veil nebula supernova remnant

Summary: shocks

- Creates structures in the solar/space plasmas
- Fast flow kinetic energy is converted into heat, nonthermal particles, waves

 Occurs during magnetic reconnection and eruptions in the corona, ubiquitous in the solar wind, Earth/planetary magnetospheres etc

What is turbulence?

- Essentially non-linear, fluid phenomenon
- Occurs when inertial forces in fluid dominate over viscosity
- Results in energy transfer from larger to smaller spatial scales

Turbulence: basic physics

Turbulence: theory

- Results in energy transfer from larger to smaller spatial scales
- Steady energy input results in a steady state solution: Kolmogorov spectrum with the inertial range

Waves v. Turbulence

- "Waves or turbulence?!" Turbulence can always be represented by waves with a wide spectrum
- Therefore, Acoustic / Alfven / Magneto-sonic / etc turbulence

MHD v. HD Turbulence

 Magnetic field adds a preferred direction, making turbulence anisotropic, with more interesting effects

Advection is stronger ||B, dissipation is stronger ±B,
 similar to other transport effects in plasma

Turbulence in collisionless plasma

- Its possible to have wide spectrum kinetic waves with the cascade and dissipation at high k
- Collisionless plasma may have viscosity due to waveparticle interaction

- Same 5/3 spectrum is observed in SW turbulence, the inertial range spanning 6 orders of magnitude – SW turbulent spectrum seems to be universal from MHD to electron scales
- Particle acceleration

Turbulence: particle acceleration

- Type II Fermi acceleration: particle repeatedly scattered by moving waves, its momentum & energy changing stochastically
- May gain or lose energy depending on the wave spectrum

Turbulence in the solar corona

 Turbulisation of plasma during magnetic reconnection

Temperature and density in twisted coronal loop (Pinto et a. 2016)

Temperature evolution in kink-unstable twisted magnetic fluxtube (Hood et al. 2009)

Turbulence in the solar corona

 Non-thermal line broadening indicates strong turbulence in flares_____

Thermal broadening

Non-thermal broadening

Turbulent line broadening in flares, correlates with the temperature (Doschek et al. 2008)

Turbulence spatially correlates with the temperature and energy release (Gordovskyy et al. 2016)

Turbulence in the solar corona

 Turbulence accounts for ~1% of the energy released in solar flares, but can be extremely important for non-thermal particle scattering

Kontar et al. 2016 PRL

Turbulence in solar wind

Belcher & Davis 1971

Cluster mission observed the turbulent eddies in SW in-situ / NASA / Derelli 2013

Summary: turbulence

- Occurs when inertial forces dominate over collisions
- Transfers energy from large-scale plasma flows to small-scale flows, then dissipates, converting energy into heat.

Destroys large-scale structures

Particle acceleration and transport

 Different types of particle acceleration: stationary electric field, waves & turbulence, shocks, betatron (collapsing magnetic traps) [Eduard Kontar's lecture on Monday]

Gordovskyy et al. 2011

Time, t_o

Gordovskyy et al. 2014

Outstanding problems

- How, where and when particles are accelerated?
- Do coronal and IPS particles come from the same source of acceleration?
- Are the same mechanisms responsible for electrons and ions?
- How on Earth you can transport a huge amount of charged particles from the upper corona to the chromosphere?

Precipitating electrons	
# Footpoint area ~1-10 Mm ²	
# Electron flux density is about 10 ²³⁻²⁴ m ⁻² s ⁻¹ , current ~10 ⁴⁻⁵ A/m ² , corresponding to B~10 ⁴ T	u
Compensation in the corona	
$\# f_{down} = f_{up} = 10^{23-24}$	
for n=10 ¹⁶ m ⁻³ , <v> = 10⁷⁻⁸m/s</v>	-
# Return current is not "thermal"	0
	2

Summary: shocks

- Creates structures in the solar/space plasmas
- Fast flow kinetic energy is converted into heat, nonthermal particles, waves

 Occurs during magnetic reconnection and eruptions in the corona, ubiquitous in the solar wind, Earth/planetary magnetospheres etc

Summary: turbulence

- Occurs when inertial forces dominate over collisions
- Transfers energy from large-scale plasma flows to small-scale flows, then dissipates, converting energy into heat.

Destroys large-scale structures

Particle acceleration and transport

 Different types of particle acceleration: stationary electric field, waves & turbulence, shocks, betatron (collapsing magnetic traps) [Eduard Kontar's lecture on Monday]

 Still no clear, comprehensive picture of particle acceleration and transport in the corona and heliosphere