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Outline
= Basic phenomenology

= Shocks

- Basic physics (conservation laws etc)

- Shocks in the solar corona and collisionless SW plasma
- Fermi | particle acceleration

= Turbulence

- Bassic physics in different regimes (collisionless, HD)

- Existing misconceptions and non-existent controversies
- Turbulence in the corona and SW

- Fermi |l particle acceleration

» Parficle acceleration

- Mechanisms of particle acceleration
- Qutstanding problems

= Summary and open questions



T&Cs, basic phenomenology etc

Thermdl Non-thermal
= Collisional = Collisionless
= Particle distribution = No reason for
quickly becomes Maxwellian distribution
Maxwellian
= Behaves like a N-body
= Behaves like a fluid system
= Magnetohydrodynamics = Kinetics
= Fluid lectures: = Kinetic lectures:
- Philippa Browning: MHD; - David Tsiklauri: Plasma
- Gunnar Hornig: kinetics;
Magnetic reconnection; - Eduard Kontar: High-
- Valery Nakariakov: energy solar/stellar

Waves & instabilities atmospheres



T&Cs, basic phenomenology etc

Thermdl Non-thermal
= Collisional bn-collisional
. o = Most interesting
= Particle distribution thing happen ) reason for
quickly becomes here nxwellian distribution
Maxwellian

haves like a N-body

= Behaves like a fluid | * Eventsinthe solar o
corona: Non-

thermal plasma

= Magnetohydrodync etics

(energetic
, particles) in .
- Philippa Browning: David Tsiklauri: Plasma
- Gunnar Hornig: kinetics;
Magnetic reconng Eduard Kontar: High-
- Valery Nakariakov energy solar/stellar

Waves & instabilitie atmospheres




T&Cs, basic phenomenology etc

Heliosphere / Solar Wind:
collisionless,
magnetic pressure~gas pressure

Corona: collisional/weakly collisional,
magnetic field dominates

. . Chromosphere, TR, lower corona:
% . .y collisional, magnetic field dominates
Y
Photosphere, Chromosphere:
collisional, gas pressure

dominates




Shock: basic physics

= Perfurbation travels faster than the local phase
speed = wave is steepening, becomes non-linear



Simple 1D (M)HD shock model

UPSTREAM .. DOWNSTREAM
\V\> ~

TO V14

= = =y ->
B+,=B,=0-> Parallel shock — VNo VNl ~
. BNO:BNIZQ > Py P1 -
Perpendicular shock Py D, -
— ~~
Bro B+,
SHOCK

= Normal component B, does not changel! (divB=0)
Normal mass flux is conserved (mass conservation)
Total energy density (I + K + M) is conserved
Momenta (separately, N and T) are conserved

E; is conserved
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Simple 1D (M)HD shock model

UPSTREAM .. DOWNSTREAM
\V\> ~

TO V14

= = =y ->
B+,=B,=0-> Parallel shock — VNo VNl ~
. BNO:BNIZQ > Py P1 -
Perpendicular shock Py D, -
— ~~
Bro B+,
SHOCK

= Normal component B, does not changel! (divB=0)
Normal mass flux is conserved (mass conservation)
Total energy density (I + K + M) is conserved
Momenta (separately, N and T) are conserved

E; is conserved



Rankine-Hugeniot relations

= MHD equations in conservative form
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Rankine-Hugeniot relations

= Mass conservation (A]
lpoVn] =0
Parallel momentum conservation

BZ
[pVNZ +p+-—|=0
2o

= Perpendicular momentum conservation
[ By —

PVTVN + _BT =0

I Ho

» Total energy conservation

pV? % B? V-B
V + +Vy——B
_N<2 V—1> Yo Tt
= E. conservation

[VN§T - BNVT] =0

=0

= divB =0
[BN] =0



Simplest case: 1D parallel shock

= 1D case, only normal component of B and V
p1V1 = poVo

p1Vi% + 11 = poVo” + po

,01V13 + 142141 _ POVO3 + YPoVo
2 y—1 2 y —1

= Solution

- Shock compression ratio N e

§vﬁ J

\
_p1_Vo_ (+DM® O (1)
po Vi (Y—-1)M?+2 (y—-1)

where M =2 =1y, |22 is the Mach number
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MHD shocks v. MHD waves

[Valery Nakariakov: Waves and instabilities]

Alfven Not compressive | No shock; r=1
disconfinuity

Fast magneto- | B correlates with | /
sonic p /

Slow magneto- |B anti-correlates |
sonic with p g




Collisionless shocks

= Collisionless = Lg>m.fp.

= Parficles don't thermalise due to collisions

= Parficle scattering (velocity/pitch-angle change) is
determined by magnetic field spatial scale
(Turbulent magnetic field!ll)

= Collisionless shocks are more versatile and require
more complicated math description



Collisionless shocks

= Quasi-perpendicular shock

Large angle

lons escape / travel from
the shock

—
= Quasi-parallel shock

lons hang around / rotate
Small angle into the shock



Collisionless shocks: particle acceleration

= Type | Fermi acceleratfion: parficle repeatedly
reflected by “mirrors” moving towards each other

= Guarantied energy gainl!



Collisionless shocks: particle acceleration

= Both HD and collisionless shocks accelerate
particles but...

= ...when mdt.p. is short, the energy gained by
particles becomes “thermal” (particle distribution is

Maxwellian)

= Therefore, parficle acceleration on collisionless
shocks is unavoidable, as plasma heating on HD
shocks



Energy conversion on shocks

= MHD shocks

Kinetic energy =) Thermal energy
of V> C, plasma flow of V < C, plasma flow

= Collisionless shocks

Thermal ener
# gy

of V < C, plasma flow

Kinetic energy
of V > C, plasma flow

Kinetic energy

of non-thermal particles




Energy conversion on shocks
UPSTREAM | DOWNSTREAM

= MHD shocks |
Kinetic energy Thermal energy
of V> C, plasma flow I of V < C, plasma flow

= Collisionless shocks |

Kinetic energy

of V > C, plasma flow

1

? Thermal energy

of V < C, plasma flow

Kinetic energyN
of non-thermal particles




Energy conversion on shocks
UPSTREAM DOWNSTREAM

= MHD shocks

Kinetic energy

Thermal energy
of V < C, plasma flow

of V > C, plasma flow

= Collisionless shocks

Kinetic energy
of V> C_plasma flow

Thermal energy

of V < C, plasma flow
Kinetic energy |

of non-thermal particles T
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|
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Shocks in the corona

= Shocks in the reconnection regions

Petschek Reconnection

Petschek 1964

Forced reconnection in non-neutral Harris
current sheet (Gordovskyy et al, 2011)




Shocks in the corona

= Upward-propagating waves becoming non-linear
(can contribute to the coronal heating)

x [Mm] Mm]

T wml
Footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube
Fedun et al. 2011



Shocks in the SW / Heliosphere

= Coronal Mass Ejections
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Shocks in the SW / Heliosphere

= Planetary magnetospheres

Belmont / Tsyganenko / 2008
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Shocks outside Solar System

Column Density (g/cc)

1.0 2.0
X Disntance (clump radii)

Mach = 1.5,K = 1
Hot Spot  Counter Jet  Core Hot Spot

Shock generated star formation / AsiroBEAR code
Cygnus A DRAGN

Tiho supernovq remnqni Vil nebU|C| SUpeI’OVCI remndnf



Summary: shocks
= Creates structures in the solar/space plasmas

= Fast flow kinetic energy is converted into heat, non-

thermal particles, waves

Kinetic energy ' Thermal energy
of V> C, plasma flow of V < C,plasma flow

Kinetic energy — Thermal energy
of V > C, plasma flow of V < C_plasma flow

Kinetic energy
of non-thermal particles

= Occurs during magnetic reconnection and
eruptions in the corona, ubiquitous in the solar wind,
Earth/planetary magnetospheres efc




What is turbulence?

K Hayashi, Uni Stanford

N Vladimirova, Uni New Mexico

= Essentially non-linear, fluid phenomenon

= Occurs when inertial forces in fluid dominate over
VISCOSItY

= Results in energy transfer from larger to smaller
spatial scales



Turbulence: basic physics

(Kinetic)
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Turbulence: theory

= Results in energy transfer from larger to smaller
spatial scales

= Steady energy input results in a steady state solution:
Kolmogorov spectrum with the inertial range

Energy IN

Kolmogorov scale

Normalized Energy

ENERGY CONTAINING
RANGE

Energy OUT

(Increasing L)

Length Scale Normalized to KoImogoFov Scale (L)

Inertia > Viscosity | High viscosity



Waves v. Turbulence

= “Waves or turbulencee¢!” — Turbulence can always
be represented by waves with a wide spectrum

= Therefore, Acoustic / Alfven / Magneto-sonic /
efc turbulence



MHD v. HD Turbulence

= Magnetic field adds a preferred direction, making
turbulence anisotropic, with more inferesting

effects .
0
;, NI
CDO '2'\'“,,7 v X/ \,}

= Advection is stronger ||B, dissipation is stronger 1B,
- similar to other transport effects in plasma



Turbulence in collisionless plasma

= |ts possible to have wide spectrum kinetic waves with
the cascade and dissipation at high k

= Collisionless plasma may have viscosity due to wave-
particle inferaction

104-\\

2 s ] = Same §/3 spectrum is

N JE observed in SW turbulence,
the inertial range spanning 6
orders of magnitude - SW

‘i = turbulent spectrum seems to
i 2 be universal from MHD to
E N s electron scales
v W N TS » Particle acceleration
107° 1(;*“ 1(;’a ml’a ml" “CT)" 1_0‘ g

k=2nf/V [km™]



Turbulence: particle acceleration

upstream ,  downstream

NSNS\

& PAVATLAVAWA WS

© Uri Keshet

U Keshet / Uni Ben Gurion

= Type |l Fermi acceleration: particle repeatedly
scatftered by moving waves, its momentum & energy
changing stochastically

= May gain or lose energy depending on the wave
spectrum



Turbulence in the solar corona

= Turbulisation of plasma durmg
magnetic reconnection

Temperature and density in twisted coronal
loop (Pinto et a. 2016)

Temperature evolution in kink-unstable
twisted magnetic fluxtube (Hood et al.
2009)



Turbulence in the solar corona

= Non-thermal line broadening indicates strong
furbulence in flares

~A
N
\

107° x Temperature (K)

80 100 120 140
FWHM (mA)

Thermal broadening
Turbulent line broadening in flares, correlates with the

Non-thermal broadening temperature (Doschek et al. 2008)
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Turbulence spatially correlates with the temperature and energy release (Gordovskyy et al. 2016)



Turbulence in the solar corona

= Turbulence accounts for ~1% of the energy released
in solar flares, but can be extremely important for
non-thermal parficle scattering

01:40 071:00 02:00
Time [UT]

Kontar et al. 2016 PRL



Turbulence in solar wind
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Summary: turbulence

= Occurs when inertial forces dominate over
collisions

= Transfers energy from large-scale plasma flows to
small-scale flows, then dissipates, converting

energy into heat.
Energy N rusuen sca

Normalized Energy

Energy OUT

Increasing L)

Length Scale Normalized to Kolmogolov Scale (L")

Inertia > Visc:osifyI High viscosity

» Destroys large-scale structures



Particle acceleration and transport

= Different types of particle acceleration: stationary
electric field, waves & turbulence, shocks,
betatron (collapsing magnetic traps) [Eduard
Kontar's lecture on Monday]

Kinetic energy

of V> C_plasma flow \

‘ Kinetic energy

of non-thermal particles

Magnetic energy




Particle acceleration in the corona and SW

[Sarah Matthews:
Solar & Stellar flares]
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Particle acceleration in the corona and SW
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Particle acceleration in the corona and SW

DC acceleration in RCS

Fermi | acceleration on shocks




Particle acceleration in the corona and SW

DC acceleration in RCS

Fermi ll
acceleration on
waves

Fermi | acceleration on shocks




Particle acceleration in the corona and SW

20 i 20

Time= 640.00824
% S %

E, keV

)
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Pitch—angle a

Gordovskyy et al. 2014



Outstanding problems

= How, where and when particles are acceleratede

= Do coronal and IPS particles come from the same
source of acceleration?

= Are the same mechanisms responsible for electrons
and ionse

= How en-Earth you can fransport a huge amount of
charged particles from the upper corona to the
chromosphere?¢



Precipitating electrons

# Footpoint area ~1-10 Mm?

# Electron flux density is about 10%3-2* m= s,

current ~104-5A [mZ GGPF@SPGHdIHQ +o0 B~104T

Compensation in the corona

# oo = T = 107324

or XV 07®m/s

||} n"




Summary: shocks
= Creates structures in the solar/space plasmas

= Fast flow kinetic energy is converted into heat, non-

thermal particles, waves

Kinetic energy ' Thermal energy
of V> C, plasma flow of V < C,plasma flow

Kinetic energy — Thermal energy
of V > C, plasma flow of V < C_plasma flow

Kinetic energy
of non-thermal particles

= Occurs during magnetic reconnection and
eruptions in the corona, ubiquitous in the solar wind,
Earth/planetary magnetospheres efc




Summary: turbulence

= Occurs when inertial forces dominate over
collisions

= Transfers energy from large-scale plasma flows to
small-scale flows, then dissipates, converting

energy into heat.
Energy N rusuen sca

Normalized Energy

Energy OUT

Increasing L)

Length Scale Normalized to Kolmogolov Scale (L")

Inertia > Visc:osifyI High viscosity

» Destroys large-scale structures



Particle acceleration and transport

= Different types of particle acceleration: stationary
electric field, waves & turbulence, shocks,
betatron (collapsing magnetic traps) [Eduard
Kontar's lecture on Monday]

Kinetic energy

of V> C_plasma flow \

‘ Kinetic energy

of non-thermal particles

Magnetic energy

= Still no clear, comprehensive picture of particle

acceleration and transport in the corona and
heliosphere




