Skip navigation

First successful routine measurements of Sun’s magnetic field in the corona

4th October 2024

A team of scientists have successfully carried out regular measurements of the outermost layer of the Sun’s atmosphere for the first time – giving us a much better understanding of the magnetic field within this region, known as the solar corona.

The Sun’s magnetic field plays a key role in shaping its atmosphere, with activity such as solar eruptions and the heating of the corona to millions of degrees Celsius direct results of the evolution of solar magnetic field over different time scales.

Close to the sun’s surface the magnetic field is strong, making it easier to measure, but in the corona the radiation is much weaker, meaning it has historically been difficult to monitor.

Caption:An image showing the Sun’s disc blocked out by a coronagraph, having a similar effect as the moon during a solar eclipse. The image is taken in infrared light. The bright wispy, hair-like features are where the Sun’s gas is highlighting the magnetic field.  Courtesy: HAO/NCAR. Design: R Morton Four years ago, researchers from Peking University, China; the National Center for Atmospheric Research, USA; and Northumbria University in the UK, made a breakthrough when they provided the first global measurements of the corona’s magnetic field through seismology, using observations from the Coronal Multi-channel Polarimeter (CoMP) instrument to determine how fast magnetic waves are moving through the Sun’s corona.

Since then, they have continued their observations and have today published new research in the journal Science detailing the results of eight months of continuous measurements of the magnetic field in the Sun’s atmosphere using data from CoMP, which is based in Hawaii.

Between February and October 2022, the team produced 114 maps of the coronal magnetic field, achieving a measurement frequency of roughly once every two days.

They were able to measure the magnetic field strength at different altitudes within the corona over multiple solar rotations and identify discrepancies in the predicted magnetic field strength within high-latitude and active regions.

Caption:Dr Richard MortonNorthumbria University’s Dr Richard Morton has been involved in the research over the past four years. His area of work focuses on magnetic waves, also known as Alfvén waves, and their ability to transfer energy through a star’s atmosphere.

Speaking about this latest research he said: “How fast the Alfvén waves move depends on how strong the magnetic field is, so by tracking their movement we can build up a picture of the sun’s magnetic field at different distances from its surface.

“We have been developing software to follow the movement of Alfvén waves and applying this to months’ worth of data from CoMP has given us a much clearer picture of how these waves behave in the corona and the impact they are having on solar activity.”

The coronal magnetic field is the main energy source for coronal heating and space weather effects. It can impact the Earth's space environment through solar wind and coronal mass ejections, posing potential threats to spacecrafts, communication system and other human activities.

By demonstrating the possibility of continuous and long-term measurements, Dr Morton and his research colleagues have opened new avenues for studying and predicting space weather in future.

In 2020 Dr Morton was awarded a prestigious UKRI Future Leader Fellowship for his research into Alfvén waves and over the last four years has led a team of academics from Northumbria, as well as the National Center for Atmospheric Research and Harvard Smithsonian Centre for Astrophysics in the United States, and the Instituto de Astrofísica de Canaria in Spain as part of the Revealing the Pattern of Solar Alfvénic Waves (RiPSAW) project.

His Fellowship has now been extended for a further three years, during which he will analyse data from the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) – a four-meter solar telescope on the island of Maui, Hawaii, and currently the largest solar telescope in the world.

He said: “I was delighted to be awarded time using the DKIST telescope – this is a new instrument and I’m looking forward to seeing how the data we gather can further improve our understanding of the corona by tracking the movement of Alfvén waves.”

Dr Morton joined Northumbria in 2012 as an Anniversary Research Fellow in the University’s Department of Mathematics, Physics and Electrical Engineering. In 2014 he was awarded a Leverhulme Trust Early Career Fellowship.

His contribution to the field of Solar Physics has been recognised with the award of the Royal Astronomical Society's Winton Capital prize in 2015 and Fowler Award in 2021.

Dr Morton is a member of Northumbria University’s world-class Solar and Space Physics peak of research excellence.

The paper, Observing the evolution of the Sun’s global coronal magnetic field over eight months, has been published in the journal Science.

North East Space Skills and Technology Centre

Our North East Space Skills and Technology Centre will be a state of the art £50M facility developed by Northumbria, with investment from the UK Space Agency and the space and satellite division of industry giant Lockheed Martin. 

Space

Northumbria University is powering the next generation of space innovation. Learn more about our expert academics, world class research and state of the art facilities.

Solar and Space Physics

Northumbria’s Solar and Space researchers work to understand the physics of the Sun and all aspects of the solar-terrestrial connection to improve space weather forecasting.

News and Features

This is the place to find all the latest news releases, feature articles, expert comment, and video and audio clips from Northumbria University

University Newspaper

Northumbria University News is packed full of news and features covering everything from research projects and business partnerships to student and staff awards.

a sign in front of a crowd
+

Northumbria Open Days

Open Days are a great way for you to get a feel of the University, the city of Newcastle upon Tyne and the course(s) you are interested in.

Research at Northumbria
+

Research at Northumbria

Research is the life blood of a University and at Northumbria University we pride ourselves on research that makes a difference; research that has application and affects people's lives.

NU World
+

Explore NU World

Find out what life here is all about. From studying to socialising, term time to downtime, we’ve got it covered.


Latest News and Features

Professor Greta Defeyter
a map showing areas of ice melt in Greenland
S2Cool project lead Dr Muhammad Wakil Shahzad
The Converted Flat in 2049, by the Interaction Research Studio, is one of seven period rooms built as part of the Real Rooms project which opened in July at the Museum of the Home in London.
The UK Centre for Polar Observation and Modelling (CPOM), based at Northumbria University, has been awarded over £400,000 by the European Space Agency to investigate tipping points in the Earth’s icy regions with a focus on the Antarctic. Photo by Professor Andrew Shepherd.
Nature Awards Inclusive Health Research
Some members of History’s editorial team (from left to right): Daniel Laqua (editor-in-chief), Katarzyna Kosior (reviews editor), Lewis Kimberley (editorial assistant), Charotte Alston (deputy editor) and Henry Miller (online editor).
Dr Elliott Johnson, Vice Chancellor’s Fellow in Public Policy at Northumbria University.

Back to top