Mechanical Engineering BEng (Hons) - i2i Soccer Academy
Option for Placement Year
Option for Study Abroad
Option for Placement Year
Option for Study Abroad
Mechanical Engineering BEng (Hons) is designed to develop your understanding of engineering within social, ethical, sustainable, and economic contexts.
Throughout the course, you will explore various engineering options and challenge conventional approaches to develop innovative solutions. Your first year establishes a foundation in engineering, while subsequent years focus on advanced mechanics, manufacturing, energy systems, and design.
Accreditation: This course is accredited by the Institution of Mechanical Engineers (IMechE) to meet the academic requirements for registration as an Incorporated Engineering (IEng), and partially meets the academic requirements for registration as a Chartered Engineer (CEng).
We receive a high number of applications with qualifications from the United States
The US High School Graduation Diploma with a minimum GPA of 3.0 plus Advanced Placement tests at Grade 3+ in 1 Maths (either Calculus AB or BC) and 1 Science (either Biology, Chemistry, Physics (1, 2, C)
112 UCAS Tariff points
From a combination of acceptable Level 3 qualifications which may include: A-level, T level, BTEC Diplomas/Extended Diplomas, Scottish and Irish Highers, Access to HE Diplomas, or the International Baccalaureate.
Applicants will need A-level Mathematics and another analytical science subject (Biology, Chemistry, Computer Sciences, Physics or Technology), or recognised equivalents.
Applicants will need Maths and English Language at minimum grade 4/C, or an equivalent.
International Qualifications:
We welcome applicants with a range of qualifications which may not match those shown above.
If you have qualifications from outside the UK, find out what you need by visiting www.northumbria.ac.uk/yourcountry
English Language Requirements:
International applicants should have a minimum overall IELTS (Academic) score of 5.5 with 5.5 in each component (or an approved equivalent*).
*The university accepts a large number of UK and International Qualifications in place of IELTS. You can find details of acceptable tests and the required grades in our English Language section:www.northumbria.ac.uk/englishqualifications
UK Fee in Year 1: £9,535
* This is the tuition fee for your first year of study. You should expect to pay tuition fees for every year of study. The University may increase fees in the second and subsequent years of your course at our discretion in line with any inflationary or other uplift, as decided by the UK Government, up to the maximum amount for fees permitted by UK law or regulation for that academic year. To give students an indication of the likely scale of any future increase, the UK government has recently suggested that increases may be linked to RPIX ( Retail Price Index excluding mortgage interest payments)
International Fee in Year 1:
ADDITIONAL COSTS
There are no Additional Costs
Module information is indicative and is reviewed annually therefore may be subject to change. Applicants will be informed if there are any changes.
KB4040 -
Engineering Analytics (Core,20 Credits)
You will learn to use a range of mathematical tools and techniques that you can apply to a wide variety of engineering activities. These skills and practices also underpin the use of more advanced engineering design and analysis tools, so gaining a good understanding of the basic principles now will help as your progress through this programme and enter the world of engineering. You will become familiar in working with formulae so that you can apply these skills within the engineering disciplines. You will learn techniques in algebra and trigonometry, such as those used by engineers to determine the shape, size, slope, mass etc. of objects and spaces as well as when and how objects will move or interact. These techniques are important to determine the unknown components in systems and are also applied to the solution of design and analysis problems. You will learn and apply the techniques of calculus, for example, those that enable you to determine how properties are changing in relation to time, as a result of changes in forces, or to calculate the quantity of work being done during a process. You will develop foundations in the skills required to apply these techniques using software tools as you progress towards more independent and complex engineering activities and prepare for entering an engineering workplace on graduation.
More informationKB4041 -
Materials & Manufacturing (Core,20 Credits)
This module introduces you to the subjects of materials and manufacturing within the programme. You will be introduced to how different types of materials are structured and their composition and ultimately how this influences their properties and behaviour. You will also explore how to make things using our practical workshop facilities using different methods and link appropriate manufacturing techniques to different types of materials. You will examine and consider the environmental and societal impact of material selection and different manufacturing approaches.
More informationKB4042 -
Applied Engineering Approaches 1 (Core,20 Credits)
In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.
More informationKB4043 -
Statics & Dynamics (Core,20 Credits)
This module covers the topics of statics and dynamics and introduces you to the fundamental concepts associated with the mechanics subject within the programme. Statics and dynamics describes and characterises how physical bodies behave, move and interact due to external influences. Everyday engineering phenomena will be contextualised through the constraints of fundamental physical laws and relationships. These concepts, such as kinematics, kinetics, structural members and different types of loading, and stress and strain will be applied to solve well-defined engineering problems using appropriate and conventional approaches. You will also learn how to select and apply appropriate experimental methods, analytical tools and computational techniques to characterise and model well-defined static and dynamic problems.
More informationKB4044 -
Thermodynamics (Core,20 Credits)
This module introduces you to the subject of fluids and energy within the programme and covers the topic of thermodynamics. You will apply knowledge and understanding of scientific principles and methodology to solve well-defined thermodynamics problems. You will explore the fundamental concepts of heat, work, and temperature and their relationships with energy, radiation, and physical properties. Analytical and computational tools will be used to model well-defined thermodynamics problems, and you will be encouraged to show creativity during problem-solving activities.
More informationKB4045 -
Applied Engineering Approaches 2 (Core,20 Credits)
The inclusion of this application focussed module in your studies will build on Applied Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills. In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial problems to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. Well bounded problem definition will allow you to develop confidence in resolving problems with well-defined information and produce answers that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may be focussed within a specific subject theme but may still to some degree require the linking together of knowledge in several topics to derive acceptable solutions and valid resolutions from an engineering perspective.
More informationKB5031 -
Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KB5030 -
Preparing for Placement (Optional,0 Credits)
You will learn to apply for a 12 month placement in a construction engineering company. You will do this through developing and improving your skills in the following areas:
1. Communication
2. CVs
3. Interviews
4. H&S within the workplace
5. Professional conduct
6. Teams
7. Constructing a Learning Plan
8. Evidencing your learning
9. Reflection in the workplace
10. Networking
KB5031 -
Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KB5034 -
Mechanics and Finite Element Analysis (Core,20 Credits)
This module provides the opportunity to build on fundamental statics and materials knowledge and further examine applied mechanics with a focus on the development of more in-depth modelling approaches that provide more detail and insight into the behaviour of materials. You will analyse mechanics concepts such as stress and strain transformations, shear stresses in beams and thin-walled structures to the solution of more broadly defined problems where there is some degree of uncertainty in their definition. Finite element analysis, a computational technique, will be used in the analysis and design of mechanical structures, components and systems and compared to complementary experimental and analytical approaches that can be used to underpin, verify and interpret simulation results.
More informationKB5035 -
Mechanical Engineering Design (Core,20 Credits)
In this module you will learn about the application of engineering design methodologies and their selection, characterisation and use within the context of engineering design problems. This will include the appropriate use of engineering tools and analytical approaches to the solution of engineering design issues whilst ensuring that issues relating to customer needs and aspects such as the sustainability and societal impact of engineering activity are considered to a suitable degree as would be expected of a professional engineer.
More informationKB5036 -
Integrative Engineering Approaches 1 (Core,20 Credits)
In this module you will be presented with authentic engineering problems that have been derived and adapted from industrial examples to give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.
More informationKB5037 -
Engineering Project Management (Core,20 Credits)
In this module you will learn about project management methodologies and their selection, application and use within the context of mechanical engineering projects. This will include the appropriate use of project management tools and software systems to gain insight into how an engineering project might be approached and managed concerning the attainment of successful completion of objectives including the utilisation of resources and other commercial considerations. Other relevant and important factors such as ethical, sustainable, societal and professional responsibilities that are pertinent to project management activity within the field of mechanical engineering will also be explored in the module.
More informationKB5038 -
Fluids and Energy (Core,20 Credits)
This module gives you opportunities to build on fundamental thermodynamic knowledge and examine practical and applied fluid flow and energy systems, including the areas associated with different types of flow and how they may influence engineering considerations, as well as energy conversion systems. The application of governing equations relating to fluid motion and the influence they have upon the specification and performance of engineering equipment and systems will be explored. Based on the application of mathematical and engineering principles, you will use analytical and computational techniques to solve problems in fluids and energy that have some degree of uncertainty in their definition. By addressing such issues using an informed and skilled engineering approach incorporating creativity and curiosity, you will be able to derive substantiated conclusions as a result of your investigations.
More informationKB5039 -
Integrative Engineering Approaches 2 (Core,20 Credits)
The inclusion of this application focussed module in your studies will build on Integrative Engineering Approaches I by allowing you to expand the areas of investigation and further develop your problem-solving, teamwork and communication skills.
In this module, you will be presented with authentic engineering problems that have been derived and adapted from industrial scenarios to
give you opportunities to explore ways to advance solutions as a developing professional engineer. It will, within the supportive environment offered by staff and your peers, allow you to develop your approach to resolving engineering problems that may involve research, experimentation, creativity and the acquisition and utilisation of new engineering skills. The incorporation of a greater degree of uncertainty in the problem definition will allow you to develop confidence in resolving problems with incomplete information and several solutions that might be considered appropriate based upon engineering judgement and perception associated with the problem. The problems encountered may span several subject areas and require the linking together of knowledge in these topics to derive acceptable solutions and valid resolutions from an engineering perspective.
KB5031 -
Academic Language Skills for Mechanical and Construction Engineering (Core – for International and EU students only,0 Credits)
Academic skills when studying away from your home country can differ due to cultural and language differences in teaching and assessment practices. This module is designed to support your transition in the use and practice of technical language and subject specific skills around assessments and teaching provision in your chosen subject. The overall aim of this module is to develop your abilities to read and study effectively for academic purposes; to develop your skills in analysing and using source material in seminars and academic writing and to develop your use and application of language and communications skills to a higher level.
The topics you will cover on the module include:
• Understanding assignment briefs and exam questions.
• Developing academic writing skills, including citation, paraphrasing, and summarising.
• Practising ‘critical reading’ and ‘critical writing’
• Planning and structuring academic assignments (e.g. essays, reports and presentations).
• Avoiding academic misconduct and gaining credit by using academic sources and referencing effectively.
• Listening skills for lectures.
• Speaking in seminar presentations.
• Presenting your ideas
• Giving discipline-related academic presentations, experiencing peer observation, and receiving formative feedback.
• Speed reading techniques.
• Developing self-reflection skills.
KB6054 -
Professional Engineering Futures (Core,20 Credits)
This module will allow you to explore what it means to be a professional engineer and the various options and opportunities open to you as a developing professional who may be contributing to the furtherment of mechanical engineering in the very near future. Exploring aspects such as the various subject areas and developing themes within mechanical engineering that may allow you to tailor your career aspirations as you graduate, as well as looking at alternative career options, this module will assist you to reflect upon your development to date and consider where you may ultimately wish to direct your career and some of the things that you might do to try and get there. Consideration will be given to the nature, types and sizes of organisations, their various stakeholders, and the different roles engineering has within different organisations. Through contemplation of prospective roles within such organisations and how you may direct your individual professional development, you will develop a roadmap to help you progress your future career based upon the development of core professional values and competencies.
More informationKB6055 -
Vibration & Control (Core,20 Credits)
Vibration and control will combine and build upon knowledge, understanding, and practical application within the subject of dynamics to tackle complex engineering problems. You will investigate how the field of control theory is used to measure and regulate vibrating mechanical systems through the selection and application of appropriate equipment. Advanced techniques and tools will be blended with the methodologies practised in previous years of your programme to facilitate investigation into complex mechanics-based problems where independence and creativity are encouraged to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will also be considered and applied to reach substantiated conclusions.
More informationKB6056 -
Mechanics of Continuous Systems (Optional,20 Credits)
The mechanics of continuous systems will unify your knowledge, understanding, and practical abilities within the subject of mechanics to tackle complex engineering problems. Advanced techniques and tools will be blended with the methodologies practised at previous levels to facilitate investigation into complex mechanics-based problems where independence and creativity is essential to explore and critically evaluate potential solutions to more open-ended challenges. Analytical, computational, and experimental techniques will be considered, applied and judged to reach substantiated conclusions related to increasingly complex problems including greater degrees of freedom and integration of multiple system components.
More informationKB6057 -
Sustainable Energy Systems (Optional,20 Credits)
This module allows you to develop and evaluate approaches to the application of fundamental engineering principles associated with fluids and energy in the context of real-world systems that include an environmental perspective. The module will investigate global concerns relating to the availability of energy sources, their sustainability and use, and how technologies relating to these aspects may be utilised and integrated into solutions that may be more acceptable and efficient in terms of societal impact and use of resources. Conventional energy systems and emerging technologies will be used to form the basis of discussion and exploration within the module supported by practical applied investigations associated with the performance of these systems.
More informationKB6058 -
Automation and Mechatronics (Optional,20 Credits)
This module introduces and explores the various aspects and technologies of industrial automation systems, such as robotic devices, and the appropriate mechanical engineering considerations associated with their design, selection and use. The module will establish competence in the application of automation systems and component selection and their integration that is integral to the specification and operation of such systems in a range of different scenarios. The module will develop the ability to select and use such systems safely and in ways that may be related to organisational aims such as quality, efficiency and output and consider relevant technical areas such as fixed and flexible automation systems, machine control (including programming) and sensor characterisation, selection and integration.
More informationKB6059 -
Global Design Challenges (Optional,20 Credits)
This module allows you to develop your design skills and knowledge through their application to addressing acknowledged global design challenges and problems. It will involve the consideration, selection and application of suitable design methodologies, approaches and techniques that are appropriate to the design problem posed. Problems within the module will be identified as having a significant impact on society (in a global context) that would benefit from the derivation of engineering design solutions within the remit of mechanical engineering subject areas. Key activities based upon design thinking and approaches, sound problem research and its translation into design requirements, through the implementation of scientific and engineering principles will be used to solve complex design problems within an environment that represents an authentic engineering design team and communication of the design results. Professional engineering considerations, such as sustainability and economics, will be some of the factors integral to the process of deriving a solution. They will necessitate a systematic and considered approach to the problem which will be supported by evidenced practical demonstration of design outcome suitability.
More informationKB6060 -
Investigative Project (40 Credits)
You will learn about and demonstrate how to apply the knowledge and skills developed earlier and concurrently in your degree programme whilst also extending your independent learning through a deep investigation of a topic, which may be of your own choice. You will develop your ability to plan, direct, progress and take responsibility for your large scale investigative project. You may be involved in the choice of the topic of your investigation and be able to lead the direction of the investigation under the guidance of a supervisor. Your investigation will be technical in nature, draw upon a broad range of existing engineering knowledge and practice, apply advanced engineering techniques and analysis, draw your verifiable conclusions supported by your findings and enable you to communicate your outcomes and conclusions in a professional manner.
More informationTo start your application, simply select the month you would like to start your course.
Top 35: Mechanical Engineering at Northumbria is ranked top 35 in the UK (Complete University Guide 2025).
Research Power: Engineering is ranked 25th for research power in the UK out of 89 submissions (REF2021). This is a rise of 8 places compared to 2014.
Accredited Course: Mechanical Engineering BEng is accredited by the Institution of Mechanical Engineers (IMechE).
This course aims to prepare you for a career as a practising engineer, equipping you with the skills and knowledge necessary to progress into technical and engineering roles.
Between your second and third year of study, you will have the opportunity to undertake a placement or study abroad, both of which will provide you with invaluable industrial and international experience.
The teaching approach on this course emphasises the practical application of professional knowledge and skills through independent, inquiry-based learning, as well as collaboration with industry and professional organisations where appropriate.
The partnership between Northumbria University and the i2i International Soccer Academy allows us to offer aspiring male and female student-athletes the opportunity to combine full-time academic study at a World Top 100 Young University (Times Higher Education Young University Rankings 2024), with professional soccer development from England's largest and most prestigious international soccer academy.
Gain insight from experienced tutors who have spent years working in engineering and technical development roles, with their expertise forming a strong foundation for your academic learning snd development.
You will also be assigned a personal tutor who will offer advice and support regarding your academic, personal, and professional development throughout your course.
Mechanical Engineering BEng aims to create a research-rich learning environment where students can develop their skills, from first learning how to conduct and evaluate research via problem-solving activities to planning and managing their investigative research project.
Subject experts enhance foundational engineering knowledge by structuring the curriculum around their research skills, interests and experiences. This research-embedded environment makes the learning process engaging, developmental, personal, and meaningful.
As you progress through the course, you will be encouraged and supported to work more independently in your studies. This approach allows you to tackle more complex challenges and take on more responsibility for your learning journey. You will be able to identify and explore individual topics of interest within the broader scope of Mechanical Engineering and research-led inquiry.
Mechanical Engineering offers specialist facilities to support your learning and professional growth, with laboratories for smart materials and composites, engineering systems, engine testing, building and constructing and more.
Our facilities are utilised to provide an authentic practice-based learning environment and rapid prototyping rooms make it easy for you to bring your design projects to life.
Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research.
All information is accurate at the time of sharing.
Full time Courses are primarily delivered via on-campus face to face learning but could include elements of online learning. Most courses run as planned and as promoted on our website and via our marketing materials, but if there are any substantial changes (as determined by the Competition and Markets Authority) to a course or there is the potential that course may be withdrawn, we will notify all affected applicants as soon as possible with advice and guidance regarding their options. It is also important to be aware that optional modules listed on course pages may be subject to change depending on uptake numbers each year.
Contact time is subject to increase or decrease in line with possible restrictions imposed by the government or the University in the interest of maintaining the health and safety and wellbeing of students, staff, and visitors if this is deemed necessary in future.
Useful Links
Find out about our distinctive approach at
www.northumbria.ac.uk/exp
Admissions Terms and Conditions
northumbria.ac.uk/terms
Fees and Funding
northumbria.ac.uk/fees
Admissions Policy
northumbria.ac.uk/adpolicy
Admissions Complaints Policy
northumbria.ac.uk/complaints
Back to top